
Design documents
This category contains design documents written by the Lix team, which may or may not be
implemented.

regexp engine investigation
Dreams
Language versioning
Docs rewrite plans
Nix lang v2
Flake stabilisation proposal
Observability and Protocol Design
Replacement CLI design & Profiles
Nix bootstrapping
Roadmap 2026

regexp engine investigation
nix uses libstdc++'s std::regex . it uses whatever version of libstdc++ the host system has.

which it invokes in both std::regex_replace std::regex_match modes.

nix occasionally uses the flags std::regex::extended and std::regex::icase which determine the
available features - it's always either no flags, or both of these together. there's also a couple
things that use the flag std::regex::ECMAScript . when the constructor is called without a flags
parameter, the flags default to std::regex::ECMAScript (see method signature in C++23 32.7.2), so
really we have only two cases.

std::cregex_iterator and std::sregex_iterator are used.

there's a header regex-combinators.hh which defines regex::group and regex::list and a couple
others that are unused. but those are just trivial textual things, not extensions, so we can ignore
the file.

getting the C++ standard
someday when C++23 is official you will be able to pirate the PDF. otherwise, you can clone
https://github.com/cplusplus/draft and check out the tag n4950 which is the current formally
adopted working draft as of 2024-03-14 and is intended to have the same technical content as the
final standard. you can then invoke make in the source subdirectory which will produce std.pdf .
you will need LaTeX installed. if you're ever not sure which working draft is the one that became a
particular version of the standard, Wikipedia will probably tell you...

(personally I install texlive.combined.scheme-full from nixpkgs on all my machines that have room for
it, but this is surely more than necessary, it just makes me feel warm and fuzzy -- Irenes)

chapter 32 is the one that documents regular expressions.

open questions that require reading the standard
what are all the syntactic and semantic constructs we need to support?

required functionality
the extended flag, per the C++ standard, "Specifies that the grammar recognized by the regular
expression engine shall be that used by extended regular expressions in POSIX.". it references
POSIX, Base Definitions and Headers, Section 9.4.

the ECMAScript flag "Specifies that the grammar recognized by the regular expression engine shall
be that used by ECMAScript in ECMA-262, as modified in [section 32.12 of the C++ standard]." it
references ECMA-262 15.10. the changes in 32.12 are important and probably do create real
compatibility issues for us, though fortunately it's only a single page.

if we complete this chart we can use it to assess which existing engines would meet our needs, or
how much of a pain in the ass it would be to make a new one

the columns are the two ways it gets invoked

extended + icase ECMAScript

Syntactic constructs -- --

(TODO: fill in every construct here)

Semantics -- --

Case-insensitivity yes ?

(TODO: fill in other behaviors here)

Dreams
This page documents the dreams of the Lix team. These are features which we have generally not
roadmapped yet, and which may not have complete and thoroughly thought-through plans, and
which we would like to think about more completely before implementing. We are writing them
down publicly so that others can dream with us.

language versioning https://wiki.lix.systems/books/lix-contributors/page/language-
versioning
split the evaluator into a separate process, interact with it only via rpc (horrors)
bytecode evaluator with all the possible trappings (horrors)

allows arbitrary runtime-define breakpoints, watchpoints, program inspection and
manipulation
interacts with rpc to allow perfect lsp hosts, better debuggers etc

new gc for the evaluator to replace bdw, prototype/template for gc in eventual rust
evaluator (horrors)
flakes as a library of code that provides new nix subcommands (horrors, others)
lix.conf prelude-path = for system-wide subcommands a la git (horrors)

also can make per-repo lix * commands (jade, janik)
eval caching with a memoize :: str -> any -> any builtin that is overridden by scopedImport
with a unique, deterministic subscope (horrors)

import := f: memoize (toString f) (scopedImport builtins f) (horrors)
flake eval caching entire attrpaths: mapAttrsRecursive (n: const (memoize n)) on all
scopes/attrsets in the "flake" (horrors)
lazyUpdate is a disaster waiting to happen, turns all values into even worse errors sources
than simple thunks (and is deeply intrusive to the evaluator for little gain). why not special
attrset ops __members, __getMember to simulate lazyUpdate in a library that doesn't infect
all future versions of the language and can be transpiled when necessary? (horrors)

pureImport is too fine grained, store paths as boundaries actually make sense (and
give memoize stable starting scopes), pure eval mode could be "ask thing to pack
itself up, add to store, eval from there like nix flakes do" (horrors)

all authoritative information about the store attached to store objects, not an sqlite
database (eg in xattrs or similar) (horrors)

would make overlayfs stores for containers/vms trivial
redo the lazy trees infra on the basis of "virtual" store paths and mountpoints (turning eg
a zip file into a virtual mountpoint /nix/store/lazy/thing.zip/...) (horrors)

notably do not use fuse for this, just a pure vfs implementation
fully decouple evaluator and store (horrors)

tvix has kind of done this with EvalIO, lix needs it too (otherwise the eval-process
split will not be possible)

store operations state, like "what derivations were realized in the last build" (Qyriad)
"what attrpath was this accessed by to build"

profiler for nix code (jade)

https://wiki.lix.systems/books/lix-contributors/page/language-versioning
https://wiki.lix.systems/books/lix-contributors/page/language-versioning

nix develop replace store path but actually good, with bind mounts (jade)
nixos-rebuild gets unfucked perhaps with samueldr code (jade)
we kinda wanna have inherits consistent by container type such that you can write inherit
(thing) [a b c] to create a list, inherit (thing) { a b c } to create a set, or nest those in
existing lists or sets to extend them in-place like current inherit (horrors)
unbreak the io model (horrors)

currently nix has an async io model shoved into a sync runtime, and an async model
that can't decide whether it's push or pull. this sucks

a dependency graph for builds which explains why different dependencies are being built
store path truncated to unique names in output...?

native nix-output-monitor (nom) style (slash bazel-style) output formatting (showing a live
updating list of stuff being built/fetched, with warnings stacking up above it)

web viewer for the build graph as it is happening with a nice live log viewer (jade)
relatedly: show closure graphs nicely (jade)

make the store properly multi-tenant, with things like, e.g. authentication and maybe
even certain http done via hooks on the client side (jade)

see e.g. https://git.lix.systems/lix-project/lix/issues/254
overall improve the clarity of what is actually running on the daemon vs the client
(jade)

replace nix profile with something not broken with a clear ramp to either have a manifest
mutably in the store or operate mutably against a configuration directory. ideally out of
tree. (jade)
fix fs builtin problems (jade)

can't read symlinks
filterSource gives no metadata of interest esp on symlinks
can't synthesize symlinks or files into the store except by serious nar abuse

(Zoe) We can imagine a generalized transformSource builtin which presents an
fs subtree as a nested attrSet containing the full metadata and contents of all
files and links in the subtree, and expects an nested attrSet in the same format
as output, allowing arbitrary transformations in pure nix code. As long any
other other operations that touch touch the file system are disallowed inside
the transformation function (evaluating other paths, building derivations,
pathExists, etc) this should be a consistent operation. There may be
performance/usability reasons to not use this precise interface, but I think it's a
good abstract guide stone of what to strive for.

is lib.filesets made of evil? how does it work?
answer: it's filterSource in a trench coat with some set operations

what if you could take a source tree of a monorepo and rewrite cross project
symlinks to refer to store paths of those other projects so you don't copy the entire
giant repo to store every time and can have each subproject as its own store path?
what if you had a fetch git subtree primitive that was free if there's no modification?

(Zoe) It's a little trickier than just that because if you want a filtered git subtree
you need some way to ensure that the filter hasn't changed either.

Better facilities for writing performant code (Zoe)

https://git.lix.systems/lix-project/lix/issues/254

Builtins should document their algorithmics and when they cause files to be written
to the store
More opt-in persistent data structures with different performance tradeoffs that can
be coerced to from the standard values

RRB vectors or similar for lists
HAMT or similar for attrSets

should allow using arbitrary values as keys
will probably need an explicit distinction between strings and symbols
also a separate set type, so you don't have to bother faking it with null
keys

StringView like type for strings
or maybe just convert in place the first time we'd need to get the length?

Doing something about IFD being bad (raito, pennae?):
https://pad.lix.systems/sW0nbPohTgqy2UdIJjPeUA

fixing ux
some way of having a persistent short lived evaluator for fast completions in CLI (Dawn)
✨ fancy ✨ repl, a la IPython and pry (Qyriad)
Support instance of Lix running locally off the main page to try out

Obviously WebAssembly schenanigans involved
replacing nixos-option (jade)

CLI commands should be possible to actually deprecate (jade)
a debug macro like rust's dbg! https://doc.rust-lang.org/std/macro.dbg.html
pipe operator (Qyriad)

and either haskell's $ or left pipe operator
hyperlinked sources in docs (jade)
a VFS mirror of the Nix store that puts the names first, attaches a more descriptive label if
necessary, and then the hash, literally just for convenience (Qyriad)

slaying the hydra
these are problems that make hydra sad

make -jsem jobserver built into Lix (horrors actually wrote one years ago)
this would allow much better build density in Lix and eliminate most need to tune
NIX_BUILD_CORES
see: https://github.com/NixOS/nixpkgs/pull/143820, it turns out the make jobserver
protocol is actually horrible, and we should instead do this with a reasonable socket
protocol injected into the sandbox by Lix

externalize deciding which host to build things on (delroth, jade)
this is necessary because /etc/nix/machines is really stupid and doesn't have nearly
enough information to decide whether a machine can admit a job.

make the remote protocol not suck (jade)

https://pad.lix.systems/sW0nbPohTgqy2UdIJjPeUA
https://doc.rust-lang.org/std/macro.dbg.html
https://github.com/NixOS/nixpkgs/pull/143820

latency is bad
a lot of stuff blocks in ways it only dubiously needs to?

what if you could have build cost estimates on large installations, which could go into
scheduling decisions? (jade)

galaxy brained idea: build a neural net for derivation build costs for scheduling
purposes. probably take as input the derivation show json with the hashes removed
and then a pile of historical hydra data
do we have the data to do this? we want cpu time, io, and (ugh these would be very
fake though because measuring memory is fraught) memory stats for builds.
schedule on machines that have space for the expected cpu-time/memory-time/io-
time of the derivation

make the nix daemon know what is actually building (jade)

Language versioning
This document is extremely a draft. It needs some editing and discussion before it can be made
into a useful thing. It's been simply copy pasted out of the pad in its current form.

See also
FIXME: piegames langver ideas

musings
puck: honestly, having language version as part of a scopedImport-style primop would be funny
horrors: we're shitposting about setting language version from the source accessor

horrors: use features...; file head clause
jade: this can be combined into feature sets like editions or such. we might become
ghc haskell but whatever.

horrors: [some kind of file head clause and/or propagation is the] only real way out of this
mess that doesn't require a package manager in the package manager
jade: yeah. doing it from flakes seems initially sane until you realise you can import below
the flake in the same git repo and then blegh
horrors: an ambient minimum-language-version binding in builtins that can be
scopedImport'ed for flake support on top of this

horrific writeup
basic mechanism
add a new syntactic element that is only valid at the head of a file and used only to declare
language requirements. nix versions that cannot satisfy all requirements must reject this element
to situations in which two nix versions parse the same file differently, or even evaluating the same
file to different derivation hashes. any kind of comment as used by eg GHC is not viable for nix for
this reason.

proposed syntax for the first implementation: use $($feature: ident)+;

anything ahead of this directive could be either unversioned nix code or versioned nix code (see
below for details), but since the directive is only valid at the head of a file or expression this "code"
can only be comments. this kind of locks us into supporting the current comment syntax forever,
but the comment syntax is rather fine so this won't be a problem.

each feature may declare a syntactical requirement for the file, a semantic requirement, or
possible both (cf rust editions, or perl use v<something>).

features may be global, namespaced to their implementations, or live in a reserved experimental
namespace an implementation can add to and remove from as it wishes with absolutely no
guarantee of future evaluatility.

syntactic features
syntax is entirely local to the file itself and has few to no intercompatibility constraints with other
code. a very useful syntax requirement would something like no-url-literals , which might strip the
syntactic ability to parse url-like sequences of characters into strings and, rather than nix currently
does the experimental feature of the same name simply throwing a parse error, parse them as eg a
lambda with a sequence of divisions in its body.

(realistically no-url-literals would not appear in practice, instead it should be implied by use itself
since url literals are such an obvious misfeature)

semantic features
semantic features produce evaluation changes that could be achieved any other way. examples of
this are:

the recent change that evalutes x in inherit (x) names... at most once overall rather than
once per inherited name accessed
potential extensions to the string context mechanism
new types of values

semantic changes may escape the expression that requires them and usually some of amount of
cross-compatibility with other semantic versions must be given. using the same examples as
above, considerations can include:

observable side-effects changing (if x includes a call to trace)
getContext returning sets an outside use may not expect
value types being unknown to outside users and causing failures

this is in fact a full classification of cross-compatibility issues: side-effects changing, evaluation
outputs changing, and evaluation inputs changing. side-effects need not be considered very much
since nixlang is supposed to be pure and all side-effects that are not part of the store interface
must already be considered incidental. evaluation outputs changing can be handled by optional lint
or runtime warnings when a versioned evaluation structure passes a semantic version boundary
without being annotated as an intentional behavioral leak. evaluation inputs changing is a non-
issue because nix plugins and the ExternalValue infrastructure already make it impossible to rely on
the type system being fully specified at the time an expression is written

inter-file inter-actions

by default language features must not be propagated across an unadorned import boundary to
retain compatibility with existing nix code (eg nixpkgs, which will not be able to switch for quite
some time). in some circumanstances it is however required to propagate language features across
imports to provide a consistent and meaningful interface, eg in the case of a hypothetical
requiredLanguageFeatures attribute for a flake. to allow for both of these requirements to peacefully
coexist we add a new primop:

if the imported expression selects a different set of language features the features specified by
scopedImportUsing are ignored.

scopedImportUsing is available in the builtins set and crucially, can be replaced. this allows a
hypothetical flake implementation to replace both scopedImportUsing and import with its own
versions that provide propagation behaviors that might be expected from such a library:

importing within the same flake simply propagates the language features as-is
importing across flake boundaries first resolves the language versions used by the
imported-from flake, then applies and propagates using these features. if the imported-
from flake then imports code from elsewhere this cycle repeats and can eventually restore
the language features set to its original value when importing code next to the code
importing the importing code
importing out of a flake boundary (as might be possible in an impure mode) resets the
propagated language feature set as if it had never been set in the first place

scopedImportUsing
:: { features ? <current language features> :: AttrSetOf bool
 ## ^ language features as would be specified by `use ...;`.
 ## selecting a default-off feature is achieved by setting its key to `true`,
 ## deselecting a default-on feature is achieve by setting its key to `false`.
 ## nesting is not needed because features are identifiers. future changes to
 ## the use interface may extend the type of this set.
 , newGlobals ? env: env :: AttrSetOf Any -> AttrSetOf Any
 ## ^ function to produce the new global environment. it receives the default globals
 ## set for the target expression language features (as calculated form `features` and
 ## the target `use` clause) and produces a new set.
 ## `scopedImport` behavior is recovered by setting this to `const newEnv`.
 }
-> PathLike
^ imported path as in `scopedImport`
-> Any
^ import result. may be cached, most immediately using the intransparent internal
object id of the provided features and the globals set. this mimics the beavior
or `import` in cppnix

additionally the current language features might be made available through a builtin value
languageFeatures by such a replacement of scopedImportUsing .

builtins versioning, global versions
a language feature may add or remove elements of builtins or the global environment. as
mentioned earlier this does not pose a large hazard since evaluation is sufficiently unespecified
that this must already be expected to happen.

interactions with eg nixpkgs lib
nixpkgs lib (and other libraries) will have to cater to the smallest common denominator when
exposing library functions/constants as they do now. if we change a function to have a different
prototype and a library reexports it from builtins to its own namespace the language features used
by the code importing the library do not matter. to make this problem less unbearable we may
want to introduce a concept of library objects and a "use library" directive like eg python from ...
import ... that can pass language features down to the library being imported in some way.

as a first approximation is would be sufficient to encourage libraries to version their namespaces in
such a way that accessing a namespace that relies on language features not present in the current
evaluator will fail to evaluate (eg by providing the library itself as a plain set and each version as
an attribute that (lazily) imports the specific version of the library needed to fulfill the requested
version).

bad ideas for features to remove/change in the
first langver

remove url literals
remove with
remove rec (including __overrides)
remove let { body = ...; ... }
remove or contextual keyword, either rework or make a real keyword
extend listToAttrs prototype to also accept 2-tuples instead of name-value-attrpairs
remove __sub and similar overloading

Feature detection
jade: I think we might want to be able to feature detect certain features, e.g. new builtin args,
which can be done without, but we would like to know if they are there.

builtins.nixVersion has been defanged, which means that an alternate cross impl compatible
mechanism needs to be created.

Minimally thought-through proposal
builtins.features is an attribute set, where individual attribute names are exposed with the value true
if they are implemented by a given implementation.

Attribute names are of the format:

"domainname.feature", for example, "systems.lix.somefeature".

Docs rewrite plans
Here, for now (public edit link): https://pad.lix.systems/lix-docs-planning

https://pad.lix.systems/lix-docs-planning

Nix lang v2
The Nix language unfortunately is full of little and big design accidents. Only so much can be fixed
without breaking backwards compatibility.

Our goal is to design an improved Nix language revision, working title "Nix 2". To keep the scope
manageable, the first iteration of language improvements will be restricted to be mostly backwards
compatible and only require minimal migration effort. This allows us to test the process on a
smaller scale, as well as allows us to get the quick and easy improvements out as soon as possible
for others to use.

Join the discussion on Matrix: #nix-lang2:lix.systems

The rough action plan is:

1. Fork the grammar and gate its usage behind a feature flag.
2. Use the new grammar as a playground to experiment and implement fixes and

improvements to the language, free of any constraints of backwards compatibility.
3. Figure out language versioning and prepare interoperability.
4. Provide a migration path, stabilize the new language, and make it available to users.

Initial language changes
Fixing floats

Status: Implemented in https://gerrit.lix.systems/c/lix/+/1979
Confidence: High

Grammar: All floats must have a digit before the . . This is a hard requirement for making some of
the other proposed syntax changes parse unambiguously in the first place.

Moreover, floating point semantics are currently broken in several ways. They need to strictly
follow IEE754 double semantics instead.

Given that such a switch is not easy to make in a safe way, as an intermediate solution all floating
point operations should be forbidden, effectively making floating point values opaque to the
language.

Set slicing
Partially adapted from https://github.com/NixOS/rfcs/pull/110.

Status: Draft implemented in https://gerrit.lix.systems/c/lix/+/1987

https://nixos.wiki/wiki/Nix_Language_Quirks
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw
https://matrix.to/#/#nix-lang2:lix.systems
https://wiki.lix.systems/books/lix-contributors/page/language-versioning
https://git.lix.systems/lix-project/lix/src/commit/a957219df2b7f360695f884f45fe4802240b9755/doc/manual/src/language/operators.md#comparison

Confidence: High

Sets can be sliced using set.[key1, key2] and set.{key1, key2} . The first returns a projection of the
listed keys into a list, the second one a subset. All keys must be identifiers (or string identifiers),
scoped to the attribute set.

[TBD: it is unclear as to whether interpolation is useful and how easy it is to implement] Identifiers
may be interpolated: set.[key1, ${key2}] is equivalent to [set.key1, set.${key2}] , set.{key1, ${key2}}
is equivalent to { key1 = set.key1; ${key2} = set.${key2}; } .

Slicing into lists is a replacement for using with :

List and Set unpacking
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1988 and
https://gerrit.lix.systems/c/lix/+/1989
Confidence: Mid

In a list, elements which are lists themselves can be unpacked with the * operator. They will be
concatenated in-place. ["hello", *list, "world"] is equivalent to ["hello"] ++ list ++ ["world"]

This can be easily combined with set slicing. The operator precedence facilitates patterns like the
following:

dependencies = python.pkgs.[
 arabic-reshaper
 babel
 beautifulsoup4
 bleach
 celery
 chardet
 cryptography
];

 configureFlags = [
 "--without-ensurepip"
 "--with-system-expat"
 *(optionals (!(stdenv.isDarwin && pythonAtLeast "3.12")) [
 # ./Modules/_decimal/_decimal.c:4673:6: error: "No valid combination of CONFIG_64, CONFIG_32 and
_PyHASH_BITS",
 # https://hydra.nixos.org/build/248410479/nixlog/2/tail
 "--with-system-libmpdec",
])

In a set, one can unpack elements like this:

let baz = { bar = "foo"; }; in { foo = "bar"; *baz.{bar}; }

This combines well with optionalAttrs :

 *(optionals (openssl != null) [
 "--with-openssl=${openssl.dev}",
])
];

{
 meta = with lib; {
 maintainers = with maintainers; [matthewbauer qyliss];
 platforms = platforms.unix;
 license = licenses.bsd2;
 };

 HOST_SH = stdenv'.shell;

 *lib.optionalAttrs stdenv'.hasCC {
 # TODO should CC wrapper set this?
 CPP = "${stdenv'.cc.targetPrefix}cpp";
 };

 *attrs;

 *lib.optionalAttrs (attrs.headersOnly or false) {
 installPhase = "includesPhase";
 dontBuild = true;
 };

 # Files that use NetBSD-specific macros need to have nbtool_config.h
 # included ahead of them on non-NetBSD platforms.
 postPatch = lib.optionalString (!stdenv'.hostPlatform.isNetBSD) ''
 set +e
 grep -Zlr "^__RCSID
 ^__BEGIN_DECLS" $COMPONENT_PATH | xargs -0r grep -FLZ nbtool_config.h |
 xargs -0tr sed -i '0,/^#/s//#include <nbtool_config.h>\n\0/'
 set -e
 '' + attrs.postPatch or "";

It also allows to have "local" let bindings for just some of the keys, without having to move them
out of the entire attrset:

As with convential set declaration, duplicate keys are not allowed.

Note that the pattern of inherit (foo) bar baz; is equivalent to *foo.{bar, baz}; .

Pipe operator function application: |>

This is being worked on in RFC 148

Status: Implemented and released in Nix and Lix as an experimental feature flag pipe-
operator
Confidence: High

In nixpkgs , there is the lib.pipe function which will allows to write g f a as pipe a [f g] . Especially
with deep nested and complicated data transformations, it makes the code flow from left to right
and thus easier to read. Sadly, it is under-used because many people are not aware of it.

The fundamental problem it tries to solve though is that function calls are prefix, i.e. that a data
processing chain with multiple entries is read from right to left. (Or, when adding parentheses, from
the inside to the out side.)

Therefore, we introduce the |> operator. a |> f |> g is equivalent to g(f(a)) .

List indexing
Status: Not implemented yet
Confidence: High

TODO link to RFC

}

{
 key1 = "value1";
 *let
 stuff = "foo";
 in
 {
 inherit stuff;
 key2 = stuff;
 };
}

https://github.com/NixOS/rfcs/pull/148

Introduce list.INDEX on lists as syntax sugar for builtins.elemAt list index . list.${index} interpolation for
dynamic variables also works like it does for attribute sets. To avoid type ambiguities at runtime,
ident.${expr} is reserved for dynamic attribute access only, dynamic list indexing still requires
using builtins.elemAt

Optional: We could even introduce .last .tail and .length as attributes. Need to think about that. Is
a bad idea because of dynamic typing.

Function list destructuring
Status: Not implemented yet
Confidence: Mid

The same way as function arguments can be destructured into an attrset with {…} , it should also
work with lists. Some restrictions:

Because order matters, arguments cannot have default values.
Like with the attrset syntax, ... indicates that the list may have more arguments.
For now, the ... must always be at the end. This restriction can easily be lifted some time
in the future.
Unlike in other languages, capturing the rest of the list (for example in head:tail patterns
like in Haskell) is not possible because of performance considerations.

This, together with list indexing syntax, will make tuple-style code constructs a first-class citizen of
the language. Replacing nameValuePair alone is expected to give significant performance gains
(short lists are heavily optimized in the evaluator).

Disallow inner-attribute merging
Status: Not implemented yet
Confidence: Mid

Nix has syntax sugar for merging attrsets within attrset declarations: { a = {}; a.b = "hello"; } will be
fused into { a = { b = "hello"; }; } at parse time.

This feature, only rarely used, does not compose well with other features like rec attrsets, leading
to unintuitive semantics and potential foot guns: https://git.lix.systems/lix-project/lix/issues/350,
https://github.com/NixOS/nix/issues/6251, https://github.com/NixOS/nix/issues/9020,
https://github.com/NixOS/nix/issues/11268,
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw#inherit-from-scopes-differently-than-inherit

Since these problems would be deeply aggravated by the new set unpacking syntax (defined
below), it is best to completely remove this feature altogether. Since it only is convenience syntax
sugar, no replacement syntax is necessary.

Expand inherit syntax

Status: Not implemented yet
Confidence: Low

The inherit syntax is adapted to be both more powerful and more consisten with the slicing syntax.
The inherit (from) is made redundant and deprecated for removal in a future language revision.
Inherit can also be used outside of attrsets and let bindings now, and will behave as if it was in a let
binding.

Proper keywords for null , true and false
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1986
Confidence: High

I don't know why these are builtins instead of keywords but at this point I assume it's because it
was faster to implement.

Proper syntax nodes for all arithmetic expressions
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1981
Confidence: High

No more __sub and __lessThan . These had no reason but laziness to exist in the first place.

? and or operator
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1990
Confidence: Mid
Write pkgs.foo.bar or default as pkgs ? foo.bar : default , remove the or pseudo-keyword
Unlike with or , no attribute access is needed: value ?: default

?: is more powerful than or , since it also works outside of .
[Optional] For consistency, function default arguments use ?: instead of ?

?: has a lower priority than function application, which solves a lot of the confusion

inherit lib.{mkIf, types};
inherit {
 lib.mkif,
 types.{attrsOf, listOf, string}
};
Mixing old with new style syntax: Do we want to allow this?
inherit
 lib.mkif
 types.{attrsOf, listOf, string}
;
This only makes sense within attrsets really
inherit foo;

? operator for testing attribute set keys becomes a special case of ?: without default
value.

This does not change any of the semantics of ? , but fixes the weird operator
precedence as well

[Optional] Introduce a new operator .? , also inspired by Kotlin. foo.?bar is equivalent to if
foo != null then foo.bar else null .

C# uses ?. instead

All line endings must be \n
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1992
Confidence: High

The current handling of \r is so jank that we'd better do without.

CRLF line endings are allowed within the file for Windows compat, but in strings the line endings
get consistently normalized to LF only.

All files must be valid UTF-8 text
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1991
Confidence: High

The world runs on UTF-8, and most tools these days expect UTF-8 encoded input by default.
There's no reason to allow other encodings or invalid byte sequences.

Sane escape sequences for strings
Status: Implemented in https://gerrit.lix.systems/c/lix/+/2089 and
https://gerrit.lix.systems/c/lix/+/2104
Confidence: Mid
Escape sequences are restricted from anything to \t , \r , \n , \" , \$, \\ , \x… , \u{…}
\ followed by a line break escapes it, a.k.a. string continuation escape (Rust)
$$ does not escape $$ anymore, so $${} is now a dollar with an interpolation

Indented strings
Don't strip indentation of first line

Status: Implemented in https://gerrit.lix.systems/c/lix/+/2104
Confidence: High

The current behavior is just weird, both for single-line strings (commonly used for unquoted ") and
multi-line strings. The new behavior is also what Haskell does (in its new multiline strings proposal).

Indented strings work with tabs

Status: Implemented in https://gerrit.lix.systems/c/lix/+/2105
Confidence: High

Programming languages may be opinionated, but making some features work only with space
indentation is crossing a line.

Tabs and spaces can be mixed as part of the string's content, but not for the string's indentation.
Indentation is calculated based on the longest common prefix.

Old cruft to remove
https://wiki.lix.systems/link/21#bkmrk-bad-ideas-for-featur

Remove unquoted URLs
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1982
Confidence: High

DSL or not, you'll survive typing those two additional extra characters.

Remove let {} syntax
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1980
Confidence: High

And also the special body attribute.

__override special attribute
Status: Implemented in TODO
Confidence: High

No more magic attributes please. __functor is already bad enough.

Fix tokenization rules
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#token-boundaries-
aren%E2%80%99t-real-and-will-hurt-you-cf-nix-iceberg

Status: Partially implemented in https://gerrit.lix.systems/c/lix/+/1984

Autocaller must die
Status: Not implemented

wtf?

Future language changes
Some changes to the syntax would make large chunks of existing code invalid. These need to be
postponed until proper versioning and migration tooling have been figured out.

Comma separated lists (confidence: high)
Currently list items are space separated. This has two major drawbacks:

1. This is inconsistent with most other language syntax features, which use , or ; as item
separator.

2. Not having them requires using parentheses around function calls in lists. Those are
currently easy to forget, causing confusing type issues for beginners. (This would be less
of an issue if we had a type system that could catch the mistake early on …)

Function declaration (confidence: low)
args@ now always also contains the default values (are there use cases where one strictly
needs this not to be the case? Regardless, that behavior could be manually emulated if
necessary)
The ? for defaults becomes ?:
Functions can also destructure list arguments: [name, value]: _ as a replacement for
nameValuePair and and to make tuples a first-class citizen (together with list indexing).

Note however that this change conflicts with comma separated lists because having
both would cause too much lookahead in the parser.

NUL bytes must be supported within strings
Status: Blocked on rewriting the garbage collector to be compatible

0-terminated strings were a mistake, and we should not make any concessions in the language to
implementations who use them. Especially when they're buggy.

Paths

Comments
While we are touching the syntax, let's leave some space here to discuss code comments.

I like having the distinction between commented out code (syntax highlighting:
unobtrusive) and commenting code (syntax highlighting: vivid).

❯ nix-build --expr '[[[({a}: [a])]]]' --arg a 'with import <nixpkgs> {}; hello' --no-link
fetching path input 'path:/nix/store/nyysli8lhjf03jgyvrf7mlxrlgnqn9qp-source'
/nix/store/kwmqk7ygvhypxadsdaai27gl6qfxv7za-hello-2.12.1

https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#nul-handling-makes-no-sense

We should leave some room for semantic doc comments, should they ever come in Nix
(TODO link respective discussions)
There is this concept of "semantic comment" that comments out entire AST nodes. This is
immensely useful even though few languages have it. (Caveat: the commented out code
must at least be syntactically correct.)

TODO

Flake stabilisation proposal
Preface
FIXME: this page hasn't been reviewed by Lix Core team members, so it's effectively a
draft/suggestion/pre-RFC/dream, whatever. It's not an official design document, but thought has
been put into making it good, anyway.

Problem Statement
Flakes are a mess. They are extremely popular (so it's very painful to discard them), but they are
also deeply flawed in so many ways, and their compat story is non-existent. Let's go through a few
things that are traditionally associated with flakes, but they don't need to be.

2.4 CLI is obvious. There's no reason why it ever had to be tied so much to flakes. It
should be stabilized independently (and probably before flakes)
Pure eval. Again, never should've been flake-gated
Installables/runnables abstraction
Git awareness
Output schemas (vanilla Nix only has default.nix and shell.nix , but flakes define more
things that are CLI-integrated like formatters, checks, nixosConfigurations etc.)
builtins.fetchTree deprecation/refactoring/stabilization (TODO: research this more)
Channels deprecation
NIX_PATH deprecation

On the last 2 points, see this: https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-
channels.html

Overall, flakes did too much at once. We can sort those out one by one. Deprecating NIX_PATH and
channels would be a bit tricky, but we can try to re-use flake registries for the same functionality.

Also, flakes have a very bad backwards-compatibility story. Worse than that, we are a CppNix fork,
so we want to provide a migration path for a reasonable amount of time. CppNix also completely
doesn't have forward compatibility. This means that doing any changes to the flake.nix or to
flake.lock will break flakes for CppNix users. This is really bad, it essentially means we're removing
flakes outright, so this isn't something that we want to do.

With those preparations out of the way, we can now get to the flakes.

Flake Components

https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2023/09/06/flakes-is-an-experiment-that-did-too-much-at-once.html

Flakes themselves have many moving parts.

flake.nix schema: description , nixConfig , inputs and outputs
inputs are super static. Changing anything about them will break a lot of stuff
outputs is extensible. Changing the predefined attributes isn't great and can break
things
description and nixConfig are arbitrary, and can contain bogus info (FIXME: is this
true?) We can use this to introduce new functionality without changing other fields,
but this is a crime, so let's try to avoid that

inputs URL parser
flake.lock format

The most cursed part is how tightly connected all of that is. flake.lock records the inputs to
builtins.fetchTree . These inputs are parsed from flake.nix . The real abstraction here is inputs URL
parser. Everything else is implementation details that leak out into public interfaces.

So the situation is tricky. Code changes leak out, there are no useful versioning mechanisms, we
need to make changes in such a way as to not break upstream, and the adoption is large enough
that we don't want to break things. But thankfully, there is a way to deal with it, largely inspired
but Opentofu's approach.

The Plan
Stage 0: Fork the Interfaces
First, we must fork the interfaces. Instead of having ossified flake.nix and flake.lock interfaces that
we have no control over - we fork them into different files. Naming is TBD, but let's use flake.lix and
flake.lick in this discussion. More specifically, the procedure looks like this:

We change all of the flake-related code to use flake.lix and flake.lick files instead
We add new internal structures for flake.lix and flake.lick . For starters, we can have the
same structure, but fix the versioning story: flake.lick should have SemVer versioning
instead of monotonic uint (that would make experimenting and/or forking the format so
much easier, because SemVer allows "metadata" info added to the actual version), and
flake.lix should have the version top-level element, too. flake.lix is computible, and so it's
very non-trivial and depends on many factors: we must version it. Also SemVer. The
versions have to be managed separately
We add the migration code. It would look at flake.nix and flake.lock and create
corresponding flake.lix and flake.lick

This completely changes the compatibility story, because we no longer have to think about
upstream usage: we only read, never modify the files the upstream uses. Together with adding
sane versioning, we can isolate the versioning to just our project, and make changes (including
backwards-incompatible ones) in a sane manner.

Stage 1: Eating Spaghetti

Next, we need to decouple implementation, flake.lix and flake.lick from each other. For the latter
two, we already have separate version on "manifest" file and the lockfile; it's a good start. Let's
discuss what needs to be done to unveil this spaghetti:

Implementation and flake.lix
TODO: does it make sense to use builtins.fetchTree for inputs, or do we need a
separate interface?
Parametrized URLs are similar to Terraform, but they have an extreme amount of
edge cases to cover. The actual parameters should be separate arguments; no need
to try to embed them into a URL
follows mechanism is horrible. It is extremely rare that you want to respect
downstream lockfile in practice. Let's just not do that
inputs is a special case among special cases; it can't contain any logic, and it also
uses C++ code for trust on first use. There's no reason to be so locked into C++: it
may be reasonable to expose the toggle to do trust on first use to the user, and have
inputs be regular NixLang, and possibly even its interpretation be in NixLang (TBD
about that)

Implementation and flake.lick
The implementation completely bleeds through to the lockfile: it saves all of the
arguments for builtins.fetchTree and uses that for reproducibility
To verify that the contents are actually the same, we need a checksum; narHash is
the checksum. TBD if we want checksum to have more complex structure
(algo/version/w.e. as well as value) or if lockfile versioning is enough
Instead of saving all of the arguments for the particular fetcher, we need to have an
abstract version that we can compute from fetcher contents (TBD if in NixLang or in
C++)

flake.lix and flake.lick
As pointed out above, parametrisation of URLs is a blatant abstraction violation; the
interface for parameters in flake.lix and flake.lick should match
flake.lix should contain "version range", and flake.lick should contain the "resolved
version". The entire specifics are tricky for e.g. git

Stage 2: Improving the Interfaces
There's a lot that can be done here. Cross-compilation, version resolution, newer fields, and more -
all of that belongs to this stage.

Stage 3: Maintenance
This path is backwards-compatible throughout, so we can maintain an upgrade path without much
issue. We can have a directory with subdirectories for each major version. Those subdirectories will
also handle upgrading the lockfile; then, we'll always have a path to upgrade from CppNix flakes to
Lix flakes: you just execute all of the existing upgrades in order.

Truly backwards-incompatible changes would be adding absolutely necessary metadata, without
which the previous version is useless. npm has this: their oldest lockfile (you can call it "v0") didn't

https://developer.hashicorp.com/terraform/language/modules/sources
https://en.wikipedia.org/wiki/Trust_on_first_use

have a version field, and it also didn't record checksums. It simply doesn't contain any metadata
that better lockfiles do, so the only way to move forward is to extract whatever you can from it,
and generate a newer-version lockfile from scratch with that data.

As long as we only need the version and checksum (which seems to be the case), the only source of
breaking changes I see is security vulnerabilities. If e.g. NAR hashing is proven to be vulnerable -
it's probably for the best to not rely on the already existing hashes at all.

Notes
This plan doesn't have to be executed as sequentially as it's described. Really, we can have
something like a from-scratch rewrite for flakes and include it in the first flake.lix + flake.lick
versions. Or we could only add the versioning code. Or we could add versioning and version
resolution, or versioning and cross-compilation, or literally anything else, as long as versioning is
definitely present.

Appendix A: Flakes are a broken abstraction
Some parts of this were already mentioned, but flakes are pretty broken on fundamental levels.
The lockfile essentially containing arguments for a C++ function are an example of that. This isn't
an abstraction pretty much by definition - it does not abstract away the details. A good example of
a lockfile is version = 3 for Cargo:

[[package]]
name = "anstyle-wincon"
version = "3.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19"
dependencies = [
 "anstyle",
 "windows-sys 0.52.0",
]

[[package]]
name = "anstyle"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b"

[[package]]
name = "windows-sys"

We more or less have the source (as bad as it is implemented in flakes), and we have checksum
(which is NAR hash) and name - but we are missing the version abstraction. There's some
complexity to unpack here (for example, it isn't trivial to say what "version" means for a tarball or a
filesystem path), but flakes don't even try - they just completely ignore the need for this
abstraction, and use C++ implementation details instead.

Another issue is the general confusion about what flakes are supposed to be, and how Nix plays
into that. Nix is a lot of things, but the way it ended up working out is that Nix is a builder
abstraction: you use Nix to build packages, and the packages may have dependencies, and yadda
yadda. But because Nix is so general, it can be used to build a "meta-package" of all "installed
packages", and you can also use it to build OS configs, so you can essentially build a system meta-
package. The whole NixOS system is just a big meta-package that consists of other packages.

This is a blessing and a curse: expressing the entire system as one package is cool and has its
advantages, but this is also a very hacky way to use the build system that is Nix. It's like using the
Makefile to configure your system. CppNix developed a lot of stuff to keep this approach going:
channels, NIX_PATH, nixos-rebuild scripts, nix-env and other things are all used to make the
experience more tolerable. So it's a lot of hacks on top of a rather quirky way to use the build
system. The biggest example on how it manifests is NixOS configuration: we use it to create
different build manifests for the resulting system, and we don't have other ways to interact with
the system, like a package manager. This is a tough place to be in: the NixOS approach has a lot of
really good properties, but it's also inherently limited because the build system is used as a
configuration engine and a package manager.

Flakes are confused and stupid because they try to be a package manager for Nix, but they are a
shitty package manager, and they also don't even try to resolve many of the hard questions that
arise from using Nix itself as a package manager. They don't have a concept of "libraries", so
everyone still uses Nixpkgs lib. They don't have version resolution, or a concept of versions. They
don't really integrate with Nix profiles, they don't integrate with NixOS, they don't draw good
boundaries between what different units of NixLang code do: provide library functions, create
packages, create configuration, or whatever else.

There are only three package manager things that flakes actually tried to do: it's
installables/runnables abstraction (just barely counts), manifest+lockfile usage (the idea itself is
good but impl is awful), and defining a schema. Everything else doesn't address the issue at hand
in the slightest: some of the ideas are good and should be decoupled from flakes, and some of the

version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.5",
]

...

ideas are awful.

Regarding installables/runnables: it's a step in the right direction for drawing boundaries between
packages, libraries and configs. But the way it's implemented is also bad. The definition for
installables is a huge nothing-burger: basically, an "installable" is a store path or a thing that
resolves into a store path (this is more or less what's said in the glossary). This definition gives you
exactly nothing, and reminds of a horribly ill-defined "derivation" stuff ([1], [2], [3], [4], [5], [6]).
The actually useful thing here is "runnables", which are things you can nix run . It's also barely
defined (mostly just using the store path and appending /bin/<name> to it lol) and absolutely
isolated from all of the Nixpkgs and NixOS work, so it ends up being completely useless in practice.

This document mainly goes over how to unbreak the flakes and make them work at all, but
creating coherent abstractions on top of the unbroken flakes is a whole other dimension of pain
and integration work. In practice, integrating flakes into Nix properly will end up requiring "owning
the stack" or close to it: being very free to refactor and unbreak many hacks in Nixpkgs and NixOS.

Appendix B: Some thoughts on post-stabilisation world
Something that would make a lot of sense is drawing further boundaries between units of NixLang
code. Flakes would be a NixLang package manager, and like there is a distinction between
"binaries" and "libraries" in proper programming languages like Rust, there would be "flake types"
for NixLang. Some easy examples include: "NixLang library", "Nix plugin", "configuration",
"package manifest", "binary/runnable", "generic package". Just using those "flake types" for
manifests doesn't do much good: there needs to be tight integration with Nixpkgs. In fact, Nixpkgs
might start composing flakes instead of just NixLang code directories: this might be a great change
for the better.

To give some examples on how integrating flakes would look like, we can take inspiration from
dreams page. Let's discuss flake-related items:

Using flakes as code libraries
This is just one possible usage! We want to draw boundaries between NixLang units.
"Flake as NixLang library" is perfect: if flakes are units for package management,
distributing NixLang libraries as flakes makes perfect sense

This would go really hard with bytecode compilation/WASM/etc., because now
we'd be able to distribute high-performance library functions written in
languages that aren't NixLang

Creating subcommands - it's a little orthogonal to the flakes discussion, but some custom
subcommands could be comething like "Nix plugins" and distributed as flakes
nix profile working on a mutable manifest is a perfect integration example: the "installed
packages" manifest would be a unit of NixLang code, and so it makes sense as a "flake
type". The coolest thing here would be to use flake resolution to have transparent
interaction with remote flakes

https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix#installables
https://nix.dev/manual/nix/2.18/glossary#gloss-installable
https://nix.dev/manual/nix/2.18/glossary#gloss-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-store-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-instantiate
https://nix.dev/manual/nix/2.18/glossary#gloss-realise
https://nix.dev/manual/nix/2.18/glossary#gloss-store-path
https://nix.dev/manual/nix/2.18/glossary#gloss-store-object
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://wiki.lix.systems/books/lix-contributors/page/dreams

fs builtins are very relevant for the discussion, too: Nixpkgs and NixOS are full of
filesystem manipulation evil, and much of it should use a dedicated "flake type"

So basically, flakes subsystem needs to be an actual package manager with actual units (flakes).
Then, flakes will actually make sense and be good, and we'll finally be able to have nice things, like
not having Nixpkgs be a gigantic fs tree with dubious abstractions. I mean, pointing to Rust again
(because it's good): Cargo doesn't just operate on fs trees and let you handle the rest like an old-
school thing like Nix forces you to do, Cargo has many abstractions to decouple fs tree from things
you care about: workspaces, crates, modules, etc. When flakes become Cargo and give us proper
composition - we'll know we've done a good job.

Observability and Protocol Design
jade: I think that we should start protocol design by thinking about who needs what information,
which is most cleanly hit by looking at how observability architecture looks. Let's get cracking on
what observability we need/want in Lix.

Context
Old profiling pad for the Nix language: https://pad.lix.systems/lix-profiling. This might want/need to
be a different system than the overall observability architecture since it affects the evaluator
primarily and has specialized needs (e.g. high performance).

Old protocol investigation pad: https://pad.lix.systems/lix-protocol-investigation

Discussion
Let's have this discussion in a pad here so we can have good live editing:
https://pad.lix.systems/lix-observability

https://pad.lix.systems/lix-profiling
https://pad.lix.systems/lix-protocol-investigation
https://pad.lix.systems/lix-observability

Replacement CLI design & Profiles
Draft pads:

https://pad.lix.systems/lix-cli-design
https://pad.lix.systems/lix-profiles

https://pad.lix.systems/lix-cli-design
https://pad.lix.systems/lix-profiles

Nix bootstrapping
Pad:

https://pad.lix.systems/VjA-WMSQS42dh-ghL98Uow

https://pad.lix.systems/VjA-WMSQS42dh-ghL98Uow

Roadmap 2026
Lix's roadmap for 2026

