
Working in the Lix
codebase
See also: See also: https://git.lix.systems/lix-
project/lix/src/branch/main/doc/manual/src/contributing/hacking.md

Codebase overview
Freezes and recommended contributions
Bug tracker organisation
Gerrit
Improving build times
Backport guide
Misc tips
Building Locally
RISC-V support
Branches

Codebase overview
The Lix system is constituted of two broad parts, the evaluator and the store daemon. The two
pieces may run on the same machine or on different machines.

For example, in a remote build setup like https://hydra.nixos.org, one node is running several
evaluators in parallel, and builds are dispatched to several builder nodes.

(fyi to anyone editing this, double click the image in the preview to edit it)

Evaluator
The evaluator is an AST tree-walking evaluator with lazy semantics.

Notable files:

libexpr/value.hh, which defines the interface for evaluated values' interactions.
libexpr/eval.cc, where most of the evaluator is.
libexpr/nixexpr.cc, where the most of the nix::Expr class hierarchy is implemented, which
are the AST types for the evaluator.
libexpr/primops.cc, defining builtins.
libexpr/parser.y, the (current) yacc generated parser.
libexpr/lexer.l, the bison-generated lexer.

Known design flaws
GC issues (FIXME add details)

General tendencies to leak memory. Hydra restarts the evaluator every so often if it
runs out of memory.

AST based evaluator design limits perf
Stack tracing has issues that make the traces confusing (FIXME add details)
Funniness with attr ordering and equality that nixpkgs depends on, which is fragile

https://hydra.nixos.org
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/value.hh
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/eval.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/eval.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/primops.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/parser.y
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/lexer.l

Currently no real tools to diagnose this and stop nixpkgs from depending on it.
https://github.com/NixOS/nix/pull/8711 exists but regresses perf a lot and is not
mergeable.

Evaluation-time build dependencies (often called IFD) block the evaluator rather than
allowing other evaluation to proceed

This has significant downstream effects such as typical derivations building hand-
written large pieces rather than generated smaller pieces with IFD, since IFD is bad.

The eval cache both has false hits and false misses, and needs redesign.

Lix team plans
Rewrite parser (done, being ported for 2.91 by horrors)
Rewrite evaluator to be amenable to moving to bytecode (horrors) (long term)
Do something about GC (long term)

Store protocol
The store protocol is a hand rolled binary protocol with monotonically increasing versioning. It runs
over a few different transports such as ssh (src/libstore/ssh-store.cc) or Unix sockets (src/libstore/uds-
remote-store.cc).

Known design flaws
We cannot extend the store protocol (not that it is Good) because of the monotonic
version numbers: we must always be stuck at some released CppNix version. This
significantly moves up the need to replace it.

The code is significantly tangled with the current protocol design.

Lix team plans
Replace protocol with capnproto, transport with websockets?

Would likely be in addition to existing protocol; existing protocol likely would be run
through a translator.

Store daemon
The store daemon takes derivations (≈ execve args and dependencies) and realises (builds or
substitutes) them. It also implements store path garbage collection.

Lix's local store implementation currently uses a SQLite database as the source of truth for
mapping derivation outputs to derivations as well as maintaining derivation metadata.

Notable files:

https://github.com/NixOS/nix/pull/8711

libstore/build/local-derivation-goal.cc, which implements the local machine's builder
including the sandbox
libstore/build/entry-points.cc, the server side entry points of the store protocol
libstore/daemon.cc
libstore/uds-remote-store.cc, the client implementation of Unix socket stores

Known design flaws
Sandbox is of dubious security especially on Linux (where it is actually expected to be
somewhat secure)

Overall tangled code around the sandbox, particularly in platform specific parts
Poor self-awareness: daemon doesn't know what it is building

Due to this plus the protocol being frozen, it would be very hard to implement e.g.
dropping into a shell on failed builds

Substitutions are inherently a kind of build so they can't happen out of dependency order
or with better parallelism
SQLite database has a habit of getting corrupted (probably due to Lix-side misuse)

Lix team plans
Replace sandbox with other software, perhaps bwrap
Fix daemon self-awareness, add protocol level features to make this better
Rearchitect substitution to enqueue weakly ordered jobs that happen in parallel and can
resume downloads
Switch to xattrs as the source of truth of store path metadata such that the SQLite DB can
be completely rebuilt

https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/build/local-derivation-goal.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/build/entry-points.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/daemon.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/uds-remote-store.cc

Freezes and recommended
contributions
Suggested contributions
Consider taking an issue marked E-help wanted: assign it to yourself and have a go. Feel free to
ask for help in the development channel. The Lix team wants these issues fixed, but they are not
high on our agenda to fix ourselves.

When in doubt, please ask the Lix team before beginning work, to make sure it is in line with our
current priorities.

Freezes
This document describes the state of freeze that Lix is in.

We do expect to have main always be in a state to run on machines you care about,
unconditionally. Nightly builds should not be a problem to run in production in any freeze state.

The purpose of this policy is to set expectations of what we are looking for in contributions, rather
than to set hard rules.

ice cube
No major features or code changes are accepted that touch the core (e.g. the hot paths of the
evaluator, the store), absent a good justification, good test coverage and a strong belief that they
will not cause regressions. In this state, we don't recommend external contributors do substantive
work outside the roadmap without speaking with the Lix team first. However, this is a guideline,
and such work can be done if discussed and planned carefully beforehand.

Simple surface features with low impact are likely to be accepted with tests, assuming that they do
not impact reliability.

New tests are gleefully accepted.

Lix is currently in status "milkshake".“

https://git.lix.systems/lix-project/lix/issues?q=&type=all&state=open&labels=157&milestone=0&assignee=0&poster=0

Bug fixes (with tests) are gleefully accepted.

For example, the following would require discussion with the Lix team before work begins, as it is
likely to not fit our goals:

Adding new features to ca-derivations
Doing substantial not-obviously-correct refactoring to the evaluator or daemon

For example, the following would likely be accepted assuming it has tests, without needing prior
discussion:

Backports of CLI UX features from CppNix
New UX features in the REPL or in output of other commands considered to not have
stable output
Backtrace improvements that don't touch hot paths
Bug fixes (to non load bearing bugs; be careful around evaluator semantics!)
Improvements to development UX

hard ice cream
Changes that improve maintainability of the core are accepted, with careful review depending on
their significance. Changes that add more complexity to the core need to pass scrutiny.

Features at the edge are accepted if they have low impact, assuming that they have tests.

soft serve
FIXME

milkshake
All kinds of changes are acceptable, but we still strive to keep main always as stable as possible
and a safe decision to daily-drive for all your nixy needs. Please don't jam the ice cream machine!

Bug tracker organisation
We have a repo of directly imported nix bugs at https://git.lix.systems/nixos/nix. Please don't file
bugs in there, we want the IDs to match. When we import a bug, we might put notes on there as
we triage it, and potentially close it.

Bug labels on NixOS/nix
lix-import - Should be imported, we think it is still a bug
lix-ignore - We don't care about this bug, it probably doesn't affect us
lix-stability - Fixing this would improve the stability and reliability of Lix.

Dispositions:

lix-norepro - Tried repro on upstream 2.18.1 and did not repro
lix-retest-after-backports - Request that this be tested again once backports are done
lix-reproduces-2.18 - Confirmed to repro in 2.18.
lix-unclear-repro - Unsure how to repro but believe it affects lix
lix-closed-libgit2 - Caused by libgit2
lix-closed-lazy-trees - Caused by lazy trees

Closed, marginal
post-build-hook doesn't print a warning if not trusted-user
https://git.lix.systems/NixOS/nix/issues/9790#issuecomment-273
complaints about builtins.derivation https://git.lix.systems/NixOS/nix/issues/9774
rejecting flake config still asks for confirm again
https://git.lix.systems/NixOS/nix/issues/9788
complaints of "substituter disabled", but is their bin cache just broken?
https://git.lix.systems/NixOS/nix/issues/9749
warn on eol https://git.lix.systems/NixOS/nix/issues/9556

https://git.lix.systems/nixos/nix
https://git.lix.systems/NixOS/nix/issues/9790#issuecomment-273
https://git.lix.systems/NixOS/nix/issues/9774
https://git.lix.systems/NixOS/nix/issues/9788
https://git.lix.systems/NixOS/nix/issues/9749
https://git.lix.systems/NixOS/nix/issues/9556

Gerrit
What is Gerrit and why do people like it?
Gerrit is a code review system from Google in a similar style to Google's internal Critique tool, but
based on Git, and publicly available as open source. It hosts a Git repo with the ability to submit
changes for review and offers mirroring to other repos (like https://git.lix.systems/lix-project/lix). It
has an entirely different review model to GitHub (and Forgejo, GitLab, etc that copy GitHub's
review model), where, instead of pull requests, you have changelists (CLs): reviews on individual
commits, with each revision of a commit being a different "patchset", rather than reviewing an
entire branch at a time. CLs may be merged one by one or in a batch.

Although this has some learning curve, we expect that you will find it pleasant to work with after
figuring it out. It has some rough edges and strong opinions that take some getting used to, but it
has served us well and saved us an inordinate amount of time both as reviewers and change
authors. The rest of this document gives some pointers on the workflows we use with Gerrit.

People like Gerrit because it makes the following things trivial or easy, all of which are somewhere
between annoying and impossible on GitHub modeled systems:

Gerrit produces better code:

Gerrit enforces good commit messages, since there is no second "pr message" so peoples'
commit messages get actually looked at with some care
Gerrit enforces good commit hygiene, since adding another commit is really just splitting
a commit with git revise -c or other tools; since there are no PR dependencies or branches
to worry about, splitting commits is no longer a big ask.

Relatedly, this directly makes reviews smaller since the overhead of doing another
change is low.

Gerrit makes reviewers' lives easier and reduces review round trips:

As a reviewer, you can look at what changed since you last reviewed, even in the
presence of rebases, by looking at the patchset history of a CL. This avoids pointless
rereview; you can actually diff versions of changes properly.
The change author generally merges the change after approval, without them needing
commit access. This means that they can do a final once-over of the change and make
sure that they are ok with its state before merging it. This reduces miscommunication
causing merging of unfinished code.
As a reviewer, you can edit someone's change and/or commit message to fix a typo (in
the web interface) and then stamp it, while giving them the final say on merging the
edited change.

https://abseil.io/resources/swe-book/html/ch19.html
https://git.lix.systems/lix-project/lix

You can give feedback like the following: "I would merge this as-is but you can consider
this feedback if you would like" and then let the change author decide to merge it.

Since the permission-requiring step in Gerrit is approving the change, not merging it,
every change author can have final say in when the change gets merged.

Review suggestions get applied as a batch without cluttering commit history in a
confusing manner.
You can download someone's change to look at it locally in one command that you can
copy paste from the Gerrit interface.

Gerrit makes your life easier as a contributor:

Submitting a new change is just a matter of committing it and pushing it. You don't need
to think about branches or the web interface or extra commands. Want to do more
changes building on it? Just commit them and push them.
Branches are not required and you can easily build off of other peoples' changes by
fetching them and rebasing against them; change dependencies are simply commit
parents. They can then be merged in whichever manner they will be merged.
If you are doing a larger change, it is natural to merge it piece by piece, adding little
improvements as you go, and putting the highest risk parts of it at the tip, making the
obviously good parts of the change land and keeping your diffs and rebases against main
smaller.
Gerrit makes it clear which comments still need action in a clean way, compared to
GitHub where resolved comments get regularly broken or disappear altogether.
Gerrit guesses (with reasonable accuracy) who a change is blocked on and shows it on the
dashboard with a little arrow next to their name, allowing you to see at a glance which
changes are your responsibility at a given time.
There is a rebase button that just works. Trivial non-conflicting rebases do not require a
rereview.

That being said, there are some downsides:

Gerrit is very mean to you if you don't have your commit history in a clean presentable
state, which takes some getting used to and Git does not make editing history easy, so it
does involve a little more fighting of Git. However, this also means that the reviews can be
of cleaner and smaller pieces of code with fewer unrelated changes.

This makes pushing work in progress code with questionable commit history harder;
see below for solutions to this.

Gerrit requires a little bit of local setup in the form of adding your SSH key or setting up
the HTTP password. It also requires a Git commit-msg hook, but nix develop automatically
does that for you.

Learning materials
https://gerrit-review.googlesource.com/Documentation/intro-user.html

https://gerrit-review.googlesource.com/Documentation/intro-user.html

https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHj
H-uk/view

Our installation
Gerrit is at https://gerrit.lix.systems

The Gerrit SSH server is running on port 2022. The repo URLs are:

ssh://{username}@gerrit.lix.systems:2022/lix
https://gerrit.lix.systems/lix if using HTTP auth; see Gerrit settings for setting an HTTP
password if desired

Hit the d key on any change to download it, which will give you the right URLs.

SSH config
You might like to add the following configuration to your ~/.ssh/config :

Basic workflow for a change
The unit of code review is a "change", which yields a single commit when "submitted" (merged).
The commit message is taken from the change description in Gerrit; in our experience this tends to
lead to more comprehensive commit messages.

For a change to be merged, it must have the following four "votes", in Gerrit's terminology:

Set by reviewers:
+2 Code-Review: the committer that reviewed this thinks it can be submitted as-is
(all users can vote +1/-1, expressing a weaker view on code acceptability)
+1 Has-Release-Notes: means the reviewer thinks your commit added relevant
release notes for that commit, or that it does not need any. This serves primarily as
a reminder.
+1 Has-Tests: means the reviewer thinks your commit added all the tests that
commit needs, or that it does not need additional tests. Like Has-Release-Notes, this

Host gerrit.lix.systems
 User YOUR_GERRIT_USERNAME
 Port 2022
 # Keep sessions open for a bit in the background to make connections faster:
 ControlMaster auto
 ControlPath /tmp/ssh-%r@%h:%p
 ControlPersist 120

https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://gerrit.lix.systems
https://man7.org/linux/man-pages/man5/ssh_config.5.html

serves primarily as a reminder.
Set automatically by CI:

+1 Verified: means CI successfully built for all our platforms and passed all tests

If you're newly part of the core team you will need to add yourself to the Gerrit lix group,
otherwise you can't set the Has-Release-Notes or Has-Tests labels. If you're not, this doesn't affect
you.

When all of those labels are set, a change becomes Ready to submit, in Gerrit's termology, and
Gerrit will give you a Submit button in the top right:

By convention, the change author has the final say on clicking the Submit button (note: this is
the opposite of the Github convention), and there is no special permission to merge a change once
it has been fully reviewed (the permissions are in the reviewer +2'ing it). This gives you a last
chance to have a look at your change before merging it.

Workflow tips
Local branches and commits
Gerrit is very mean to you if you don't have your local commit history in a linear presentable state,
which takes getting used to but it is very low overhead once you get used to it. In short, amended
commits become "patchsets", new commits become changes, and multiple commits help link your
changes together as a "relation chain".

Note: if you're coming from Chromium, this is different to how they use Gerrit, where multiple commits become
patchsets, and only the first commit on a local branch creates a new change.

Gerrit’s commit-msg hook generates a new Change-Id for each commit you make, which in turn
creates a new change that gets reviewed separately. To update an existing change after review
feedback, amend or squash your changes into your old commit, keeping its Change-Id unchanged,

https://wiki.lix.systems/uploads/images/gallery/2024-05/screenshot-20240507-165352.png
https://gerrit.lix.systems/Documentation/cmd-hook-commit-msg.html
https://gerrit.lix.systems/Documentation/user-changeid.html

then push.

Consider not pushing for review before it is clean, or split commits up with git-revise (good) or jj
(better) after the fact, amending as you work. If you want a backup of your changes, you can fork it
on Forgejo and push to that fork.

Basic Pushing
If you cloned the repo from Forgejo, be sure to change your remote URL to point to Gerrit before
continuing. Assuming your remote is called origin (which is the default):

git remote set-url origin ssh://{username}@gerrit.lix.systems:2022/lix

Then you can push to Gerrit with:

git push origin HEAD:refs/for/main

If you get tired of doing this every time, you can automate it by setting the .git/config as follows:

git config remote.origin.push HEAD:refs/for/main

You will have to do that in each fresh check-out. Once it's done, git push will work without
additional options.

If you get a “remote unpack failed” error while pushing, run git fetch then try again.

If you wish to push a change and immediately mark it as WIP, you can push with -o wip , or make
that the default behavior by checking Set new changes to "work in progress" by default in Gerrit's user
settings, under "Preferences".

Topics & Push Arguments

A Gerrit topic may be set on push with:

Which will create all pushed changes with the topic "foo". Topics are helpful for grouping long
series of related changes.

A change may also be marked as "work in progress" on push:

Gerrit has documentation on other push arguments you can use here, but it also takes a help
argument whose output is more canonical and might be easier to understand, which you can view
with:

git push origin HEAD:refs/for/main%topic=foo

git push origin HEAD:refs/for/main%wip

https://git.lix.systems/lix-project/lix
https://gerrit-review.googlesource.com/Documentation/cross-repository-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html

At the time of this writing (2024/06/26), that output looks like this:

git push origin HEAD:refs/for/main%help

$ git push origin @:refs/for/main%help
Total 0 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Processing changes: refs: 1, done
remote:
remote: Help for refs/for/branch:
remote:
remote: --base BASE : merge base of changes
remote: --cc CC : add CC to changes
remote: --create-cod-token : create a token for consistency-on-dema
remote: nd (default: false)
remote: --deadline NAME : deadline after which the push should
remote: be aborted
remote: --edit (-e) : upload as change edit (default: false)
remote: --hashtag (-t) HASHTAG : add hashtag to changes
remote: --help (-h) : display this help text (default: true)
remote: --ignore-automatic-attention-set-rules : do not change the attention set on
remote: (-ias, -ignore-attention-set) this push (default: false)
remote: --label (-l) LABEL+VALUE : label(s) to assign (defaults to +1 if
remote: no value provided)
remote: --merged : create single change for a merged
remote: commit (default: false)
remote: --message (-m) MESSAGE : Comment message to apply to the review
remote: --no-publish-comments (--np) : do not publish draft comments
remote: (default: false)
remote: --notify [NONE | OWNER | : Notify handling that defines to whom
remote: OWNER_REVIEWERS | ALL] email notifications should be sent.
remote: Allowed values are NONE, OWNER,
remote: OWNER_REVIEWERS, ALL. If not set, the
remote: default is ALL.
remote: --notify-bcc USER : user that should be BCC'd one time by
remote: email
remote: --notify-cc USER : user that should be CC'd one time by
remote: email
remote: --notify-to USER : user that should be notified one time
remote: by email
remote: --private : mark new/updated change as private

Pulling
Pulling from Gerrit will work normally. It's worth keeping in mind that sometimes a CL you're
working on has been edited in the web UI or by another contributor, so the commit in your repo
isn't the latest. Rebasing will usually make the duplicate go away; this is part of the normal rebase
semantics, not Gerrit magic. You might consider making rebase-on-pull your default.

Sandbox branches

This feature has some notable ways to shoot yourself in the foot. We still support it,
since it allows for running CI builds on things before they become proper CLs. If you
don't need that and don't want to worry about the footguns, consider using a branch on
a Forgejo fork for sharing WIP code.

In particular, if a commit is in any branch already including a sb/ branch, it will be
rejected with the error "no new changes" if it is later pushed to refs/for/main . This can
be worked around by amending all the commits so they are distinct, or by git push origin

HEAD:refs/for/main%base=$(git rev-parse origin/main) , which forces the merge-base

Use refs/heads/sb/USERNAME/* .

remote: (default: false)
remote: --publish-comments : publish all draft comments on updated
remote: changes (default: false)
remote: --ready : mark change as ready (default: false)
remote: --remove-private : remove privacy flag from updated
remote: change (default: false)
remote: --reviewer (-r) REVIEWER : add reviewer to changes
remote: --skip-validation : skips commit validation (default:
remote: false)
remote: --submit : immediately submit the change
remote: (default: false)
remote: --topic NAME : attach topic to changes
remote: --trace NAME : enable tracing
remote: --wip (-work-in-progress) : mark change as work in progress
remote: (default: false)
remote:
To ssh://gerrit.lix.systems:2022/lix
 ! [remote rejected] HEAD -> refs/for/main%help (see help)
error: failed to push some refs to 'ssh://gerrit.lix.systems:2022/lix'

https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html#base

CI rerun
Push the CL again with a no-changes commit amendment if you want to force CI to rerun.

Finding CLs to review
Consider bookmarking: https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-
Review%3C2

https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2
https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2

Improving build times
Setup
Use a clang stdenv:

nix develop .#native-clangStdenvPackages

Then delete build/ if you were using gcc before. Enable build-time profiling with:

just setup; meson configure build -Dprofile-build=enabled

Then run the build: just compile .

Enabling build-time profiling itself costs about 10% of compile time but has no other disadvantage.

Build time reports
Use maintainers/buildtime_report.sh build/ to generate a build time report. This will tell you where all
our build time went by looking at the trace files and producing a badness summary.

Sample report
Build-time report sample

lix/lix2 » ClangBuildAnalyzer --analyze buildtimeold.bin
Analyzing build trace from 'buildtimeold.bin'...
**** Time summary:
Compilation (551 times):
 Parsing (frontend): 1465.3 s
 Codegen & opts (backend): 1110.9 s

**** Files that took longest to parse (compiler frontend):
 10478 ms: build/src/libstore/liblixstore.so.p/build_local-derivation-goal.cc.o
 10319 ms: build/src/libexpr/liblixexpr.so.p/primops.cc.o
 9947 ms: build/src/nix/nix.p/flake.cc.o
 9850 ms: build/src/libexpr/liblixexpr.so.p/eval.cc.o

 9751 ms: build/src/nix/nix.p/profile.cc.o
 9643 ms: build/src/nix/nix.p/develop.cc.o
 9296 ms: build/src/libcmd/liblixcmd.so.p/installable-attr-path.cc.o
 9286 ms: build/src/libstore/liblixstore.so.p/build_derivation-goal.cc.o
 9208 ms: build/src/libcmd/liblixcmd.so.p/installables.cc.o
 9007 ms: build/src/nix/nix.p/.._nix-env_nix-env.cc.o

**** Files that took longest to codegen (compiler backend):
 24226 ms: build/src/libexpr/liblixexpr.so.p/primops_fromTOML.cc.o
 24019 ms: build/src/libexpr/liblixexpr.so.p/primops.cc.o
 21102 ms: build/src/libstore/liblixstore.so.p/build_local-derivation-goal.cc.o
 16246 ms: build/src/libstore/liblixstore.so.p/store-api.cc.o
 14586 ms: build/src/nix/nix.p/.._nix-build_nix-build.cc.o
 13746 ms: build/src/libexpr/liblixexpr.so.p/eval.cc.o
 13287 ms: build/src/libstore/liblixstore.so.p/binary-cache-store.cc.o
 13263 ms: build/src/nix/nix.p/profile.cc.o
 12970 ms: build/src/nix/nix.p/develop.cc.o
 12621 ms: build/src/libfetchers/liblixfetchers.so.p/github.cc.o

**** Templates that took longest to instantiate:
 42922 ms: nlohmann::basic_json<>::parse<const char *> (69 times, avg 622 ms)
 32180 ms: nlohmann::detail::parser<nlohmann::basic_json<>, nlohmann::detail::i... (69 times, avg 466 ms)
 27337 ms: nix::HintFmt::HintFmt<nix::Uncolored<std::basic_string<char>>> (246 times, avg 111 ms)
 25338 ms: nlohmann::basic_json<>::basic_json (293 times, avg 86 ms)
 23641 ms: nlohmann::detail::parser<nlohmann::basic_json<>, nlohmann::detail::i... (69 times, avg 342 ms)
 20203 ms: boost::basic_format<char>::basic_format (492 times, avg 41 ms)
 17174 ms: nlohmann::basic_json<>::json_value::json_value (368 times, avg 46 ms)
 15603 ms: boost::basic_format<char>::parse (246 times, avg 63 ms)
 13268 ms: std::basic_regex<char>::_M_compile (28 times, avg 473 ms)
 12757 ms: std::__detail::_Compiler<std::regex_traits<char>>::_Compiler (28 times, avg 455 ms)
 10813 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_disjunction (28 times, avg 386 ms)
 10719 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_alternative (28 times, avg 382 ms)
 10508 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_term (28 times, avg 375 ms)
 9516 ms: nlohmann::detail::json_sax_dom_callback_parser<nlohmann::basic_json<... (69 times, avg 137
ms)
 9112 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_atom (28 times, avg 325 ms)
 8683 ms: std::basic_regex<char>::basic_regex (18 times, avg 482 ms)
 8241 ms: std::operator<=> (438 times, avg 18 ms)
 7561 ms: std::vector<boost::io::detail::format_item<char, std::char_traits<ch... (246 times, avg 30 ms)

 7475 ms: std::vector<boost::io::detail::format_item<char, std::char_traits<ch... (246 times, avg 30 ms)
 7309 ms: std::reverse_iterator<std::_Bit_iterator> (268 times, avg 27 ms)
 7131 ms: boost::stacktrace::basic_stacktrace<>::basic_stacktrace (246 times, avg 28 ms)
 6868 ms: boost::stacktrace::basic_stacktrace<>::init (246 times, avg 27 ms)
 6518 ms: std::reverse_iterator<std::_Bit_const_iterator> (268 times, avg 24 ms)
 5716 ms: std::__detail::_Synth3way::operator()<std::variant<nix::OutputsSpec:... (182 times, avg 31 ms)
 5303 ms: nix::make_ref<nix::SingleDerivedPath, nix::DerivedPathOpaque> (178 times, avg 29 ms)
 5244 ms: std::__uninitialized_move_a<boost::io::detail::format_item<char, std... (246 times, avg 21 ms)
 4857 ms: std::make_shared<nix::SingleDerivedPath, nix::DerivedPathOpaque> (178 times, avg 27 ms)
 4813 ms: std::__detail::_Synth3way::operator()<std::variant<nix::TextIngestio... (158 times, avg 30 ms)
 4648 ms: nlohmann::detail::json_sax_dom_callback_parser<nlohmann::basic_json<... (69 times, avg 67
ms)
 4597 ms: std::basic_regex<char>::basic_regex<std::char_traits<char>, std::all... (10 times, avg 459 ms)

**** Template sets that took longest to instantiate:
 55715 ms: std::__do_visit<$> (3603 times, avg 15 ms)
 47739 ms: std::__detail::__variant::__gen_vtable_impl<$>::__visit_invoke (11132 times, avg 4 ms)
 43338 ms: nlohmann::basic_json<$>::parse<$> (85 times, avg 509 ms)
 43097 ms: std::__detail::__variant::__raw_idx_visit<$> (2435 times, avg 17 ms)
 32390 ms: nlohmann::detail::parser<$>::parse (83 times, avg 390 ms)
 30986 ms: nix::HintFmt::HintFmt<$> (1261 times, avg 24 ms)
 30255 ms: std::__and_<$> (25661 times, avg 1 ms)
 29762 ms: std::unique_ptr<$> (2116 times, avg 14 ms)
 28609 ms: std::__tuple_compare<$>::__eq (2978 times, avg 9 ms)
 27560 ms: nlohmann::detail::parser<$>::sax_parse_internal<$> (167 times, avg 165 ms)
 27239 ms: std::variant<$> (1959 times, avg 13 ms)
 26837 ms: std::__invoke_result<$> (10782 times, avg 2 ms)
 25972 ms: std::tuple<$> (5714 times, avg 4 ms)
 24247 ms: std::__uniq_ptr_data<$> (2116 times, avg 11 ms)
 24061 ms: std::__result_of_impl<$> (9029 times, avg 2 ms)
 23949 ms: std::__uniq_ptr_impl<$> (2116 times, avg 11 ms)
 21185 ms: std::optional<$> (2502 times, avg 8 ms)
 21044 ms: std::pair<$> (4989 times, avg 4 ms)
 20852 ms: std::__or_<$> (24005 times, avg 0 ms)
 20203 ms: boost::basic_format<$>::basic_format (492 times, avg 41 ms)
 20184 ms: std::tie<$> (2895 times, avg 6 ms)
 19938 ms: nlohmann::basic_json<$>::create<$> (668 times, avg 29 ms)
 19798 ms: std::allocator_traits<$>::construct<$> (5720 times, avg 3 ms)
 19182 ms: std::__detail::__variant::_Variant_base<$> (1959 times, avg 9 ms)

 19151 ms: std::_Rb_tree<$>::_M_erase (2320 times, avg 8 ms)
 19094 ms: std::_Rb_tree<$>::~_Rb_tree (2022 times, avg 9 ms)
 18735 ms: nlohmann::basic_json<$>::basic_json (243 times, avg 77 ms)
 18546 ms: std::__detail::_Synth3way::_S_noexcept<$> (2542 times, avg 7 ms)
 17174 ms: nlohmann::basic_json<$>::json_value::json_value (368 times, avg 46 ms)
 17111 ms: nlohmann::detail::conjunction<$> (907 times, avg 18 ms)

**** Functions that took longest to compile:
 2091 ms: _GLOBAL__sub_I_primops.cc (../src/libexpr/primops.cc)
 1799 ms: nix::fetchers::GitInputScheme::fetch(nix::ref<nix::Store>, nix::fetc... (../src/libfetchers/git.cc)
 1388 ms: nix::Settings::Settings() (../src/libstore/globals.cc)
 1244 ms: main_nix_build(int, char**) (../src/nix-build/nix-build.cc)
 1021 ms: nix::LocalDerivationGoal::startBuilder() (../src/libstore/build/local-derivation-goal.cc)
 918 ms: nix::LocalStore::LocalStore(std::map<std::__cxx11::basic_string<char... (../src/libstore/local-
store.cc)
 835 ms: opQuery(Globals&, std::__cxx11::list<std::__cxx11::basic_string<char... (../src/nix-env/nix-env.cc)
 733 ms: nix::daemon::performOp(nix::daemon::TunnelLogger*, nix::ref<nix::Sto...
(../src/libstore/daemon.cc)
 589 ms: _GLOBAL__sub_I_tests.cc (../tests/unit/libutil/tests.cc)
 578 ms: main_build_remote(int, char**) (../src/build-remote/build-remote.cc)
 522 ms: nix::fetchers::MercurialInputScheme::fetch(nix::ref<nix::Store>, nix...
(../src/libfetchers/mercurial.cc)
 521 ms: nix::LocalDerivationGoal::registerOutputs[abi:cxx11]() (../src/libstore/build/local-derivation-
goal.cc)
 461 ms: nix::getNameFromURL_getNameFromURL_Test::TestBody() (../tests/unit/libutil/url-name.cc)
 440 ms: nix::Installable::build2(nix::ref<nix::Store>, nix::ref<nix::Store>,... (../src/libcmd/installables.cc)
 392 ms: nix::prim_fetchClosure(nix::EvalState&, nix::PosIdx, nix::Value**, n...
(../src/libexpr/primops/fetchClosure.cc)
 390 ms: nix::NixArgs::NixArgs() (../src/nix/main.cc)
 388 ms: update(std::set<std::__cxx11::basic_string<char, std::char_traits<ch... (../src/nix-channel/nix-
channel.cc)
 340 ms: _GLOBAL__sub_I_primops.cc (../tests/unit/libexpr/primops.cc)
 332 ms: nix::flake::lockFlake(nix::EvalState&, nix::FlakeRef const&, nix::fl... (../src/libexpr/flake/flake.cc)
 305 ms: _GLOBAL__sub_I_lockfile.cc (../src/libexpr/flake/lockfile.cc)
 300 ms: nix_store::opQuery(std::__cxx11::list<std::__cxx11::basic_string<cha... (../src/nix-store/nix-
store.cc)
 296 ms: nix::parseFlakeRefWithFragment(std::__cxx11::basic_string<char, std:...
(../src/libexpr/flake/flakeref.cc)
 289 ms: _GLOBAL__sub_I_error_traces.cc (../tests/unit/libexpr/error_traces.cc)

 278 ms: nix::ErrorTraceTest_genericClosure_Test::TestBody() (../tests/unit/libexpr/error_traces.cc)
 274 ms: CmdDevelop::run(nix::ref<nix::Store>, nix::ref<nix::Installable>) (../src/nix/develop.cc)
 269 ms: nix::flake::lockFlake(nix::EvalState&, nix::FlakeRef const&, nix::fl... (../src/libexpr/flake/flake.cc)
 257 ms: nix::NixRepl::processLine(std::__cxx11::basic_string<char, std::char... (../src/libcmd/repl.cc)
 251 ms: nix::derivationStrictInternal(nix::EvalState&, std::__cxx11::basic_s... (../src/libexpr/primops.cc)
 249 ms: toml::result<toml::basic_value<toml::discard_comments, std::unordere...
(../src/libexpr/primops/fromTOML.cc)
 238 ms: nix::LocalDerivationGoal::runChild() (../src/libstore/build/local-derivation-goal.cc)

**** Function sets that took longest to compile / optimize:
 10243 ms: std::vector<$>::_M_fill_insert(__gnu_cxx::__normal_iterator<$>, unsi... (190 times, avg 53 ms)
 9752 ms: bool boost::io::detail::parse_printf_directive<$>(__gnu_cxx::__norma... (190 times, avg 51 ms)
 8377 ms: void boost::io::detail::put<$>(boost::io::detail::put_holder<$> cons... (191 times, avg 43 ms)
 5863 ms: boost::basic_format<$>::parse(std::__cxx11::basic_string<$> const&) (190 times, avg 30 ms)
 5660 ms: std::vector<$>::_M_fill_insert(std::_Bit_iterator, unsigned long, bo... (190 times, avg 29 ms)
 4264 ms: non-virtual thunk to boost::wrapexcept<$>::~wrapexcept() (549 times, avg 7 ms)
 4023 ms: std::_Rb_tree<$>::_M_erase(std::_Rb_tree_node<$>*) (1238 times, avg 3 ms)
 3715 ms: boost::stacktrace::detail::to_string_impl_base<boost::stacktrace::de... (166 times, avg 22 ms)
 3705 ms: std::vector<$>::_M_fill_assign(unsigned long, boost::io::detail::for... (190 times, avg 19 ms)
 3326 ms: boost::basic_format<$>::str[abi:cxx11]() const (144 times, avg 23 ms)
 3070 ms: void boost::io::detail::mk_str<$>(std::__cxx11::basic_string<$>&, ch... (191 times, avg 16 ms)
 2839 ms: boost::basic_format<$>::make_or_reuse_data(unsigned long) (190 times, avg 14 ms)
 2321 ms: std::__cxx11::basic_string<$>::_M_replace(unsigned long, unsigned lo... (239 times, avg 9 ms)
 2213 ms: std::_Rb_tree<$>::_M_get_insert_hint_unique_pos(std::_Rb_tree_const_... (203 times, avg 10 ms)
 2200 ms: boost::wrapexcept<$>::~wrapexcept() (549 times, avg 4 ms)
 2093 ms: std::vector<$>::~vector() (574 times, avg 3 ms)
 1894 ms: bool std::__detail::_Compiler<$>::_M_expression_term<$>(std::__detai... (112 times, avg 16 ms)
 1871 ms: int boost::io::detail::upper_bound_from_fstring<$>(std::__cxx11::bas... (190 times, avg 9 ms)
 1867 ms: boost::wrapexcept<$>::clone() const (549 times, avg 3 ms)
 1824 ms: std::_Rb_tree_iterator<$> std::_Rb_tree<$>::_M_emplace_hint_unique<$... (244 times, avg 7
ms)
 1821 ms: toml::result<$> toml::detail::sequence<$>::invoke<$>(toml::detail::l... (93 times, avg 19 ms)
 1814 ms: nlohmann::json_abi_v3_11_2::detail::serializer<$>::dump(nlohmann::js... (39 times, avg 46 ms)
 1799 ms: nix::fetchers::GitInputScheme::fetch(nix::ref<$>, nix::fetchers::Inp... (1 times, avg 1799 ms)
 1771 ms: boost::io::detail::format_item<char, std::char_traits<char>, std::al... (190 times, avg 9 ms)
 1762 ms: std::__detail::_BracketMatcher<$>::_BracketMatcher(std::__detail::_B... (112 times, avg 15 ms)
 1760 ms: std::_Function_handler<$>::_M_manager(std::_Any_data&, std::_Any_dat... (981 times, avg 1 ms)
 1733 ms: std::__detail::_Compiler<$>::_M_quantifier() (28 times, avg 61 ms)
 1694 ms: std::__cxx11::basic_string<$>::_M_mutate(unsigned long, unsigned lon... (251 times, avg 6 ms)

 1650 ms: std::vector<$>::vector(std::vector<$> const&) (210 times, avg 7 ms)
 1650 ms: boost::io::basic_altstringbuf<$>::overflow(int) (190 times, avg 8 ms)

**** Expensive headers:
178153 ms: ../src/libcmd/installable-value.hh (included 52 times, avg 3426 ms), included via:
 40x: command.hh
 5x: command-installable-value.hh
 3x: installable-flake.hh
 2x: <direct include>
 2x: installable-attr-path.hh

176217 ms: ../src/libutil/error.hh (included 246 times, avg 716 ms), included via:
 36x: command.hh installable-value.hh installables.hh derived-path.hh config.hh experimental-features.hh
 12x: globals.hh config.hh experimental-features.hh
 11x: file-system.hh file-descriptor.hh
 6x: serialise.hh strings.hh
 6x: <direct include>
 6x: archive.hh serialise.hh strings.hh
 ...

173243 ms: ../src/libstore/store-api.hh (included 152 times, avg 1139 ms), included via:
 55x: <direct include>
 39x: command.hh installable-value.hh installables.hh
 7x: libexpr.hh
 4x: local-store.hh
 4x: command-installable-value.hh installable-value.hh installables.hh
 3x: binary-cache-store.hh
 ...

170482 ms: ../src/libutil/serialise.hh (included 201 times, avg 848 ms), included via:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh
 14x: store-api.hh nar-info.hh hash.hh
 11x: <direct include>
 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh
 7x: libexpr.hh value.hh source-path.hh archive.hh
 6x: fetchers.hh hash.hh
 ...

169397 ms: ../src/libcmd/installables.hh (included 53 times, avg 3196 ms), included via:

 40x: command.hh installable-value.hh
 5x: command-installable-value.hh installable-value.hh
 3x: installable-flake.hh installable-value.hh
 2x: <direct include>
 1x: installable-derived-path.hh
 1x: installable-value.hh
 ...

159740 ms: ../src/libutil/strings.hh (included 221 times, avg 722 ms), included via:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh serialise.hh
 19x: <direct include>
 14x: store-api.hh nar-info.hh hash.hh serialise.hh
 11x: serialise.hh
 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh
 7x: libexpr.hh value.hh source-path.hh archive.hh serialise.hh
 ...

156796 ms: ../src/libcmd/command.hh (included 51 times, avg 3074 ms), included via:
 42x: <direct include>
 7x: command-installable-value.hh
 2x: installable-attr-path.hh

150392 ms: ../src/libutil/types.hh (included 251 times, avg 599 ms), included via:
 36x: command.hh installable-value.hh installables.hh path.hh
 11x: file-system.hh
 10x: globals.hh
 6x: fetchers.hh
 6x: serialise.hh strings.hh error.hh
 5x: archive.hh
 ...

133101 ms: /nix/store/644b90j1vms44nr18yw3520pzkrg4dd1-boost-1.81.0-
dev/include/boost/lexical_cast.hpp (included 226 times, avg 588 ms), included via
:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh serialise.hh
strings.hh
 19x: file-system.hh
 11x: store-api.hh nar-info.hh hash.hh serialise.hh strings.hh
 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh

 7x: libexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh
 6x: eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh
 ...

132887 ms: /nix/store/h2abv2l8irqj942i5rq9wbrj42kbsh5y-gcc-12.3.0/include/c++/12.3.0/memory (included
262 times, avg 507 ms), included via:
 36x: command.hh installable-value.hh installables.hh path.hh types.hh ref.hh
 16x: gtest.h
 11x: file-system.hh types.hh ref.hh
 10x: globals.hh types.hh ref.hh
 10x: json.hpp
 6x: serialise.hh
 ...

 done in 0.6s.

Manually looking at traces
Note that the summary in the report can miss details like why one particular header is bad; to find
that out, use a trace viewer to inspect the JSON trace file; we suggest rg -t json -uu error\.hh build/ |
less to find some .cc trace that the bad header (in this example, error.hh) appears in.

You can look at individual file traces by opening some file like
build/src/libcmd/liblixcmd.so.p/command.cc.json in https://ui.perfetto.dev or another Chrome-trace-json
compatible trace viewer like Speedscope.

This will produce a flamegraph of the trace (screenshot shows Perfetto):

https://ui.perfetto.dev
https://www.speedscope.app/

The most general spans of compile time are at the top, and the constituent spans are shown as you
go down.

Successful build time reduction CLs
cl/588: 15%
cl/1351: 10%

See the build-time-optimisation Gerrit topic for more related things.

https://wiki.lix.systems/uploads/images/gallery/2024-05/kCJNfXnY2ri6yT0o-image-1717044340710.png
https://gerrit.lix.systems/c/lix/+/588
https://gerrit.lix.systems/c/lix/+/1351
https://gerrit.lix.systems/q/topic:%22build-time-optimisation%22

Backport guide
Don't forget, using Gerrit is a bit different than other systems.

single commits
try git cherry-pick -x first. if this works, excellent. if not, apply the usual cherry-picking procedures:

track down apply failures to intermediate changes. maybe cherry-pick those first if they're
not too awful, but experience shows that they usually are too awful
anything that touches the store or contains the word Accessor in the vicinity probably
needs to be picked about and rewritten from scratch
always test ofc, even if something applies cleanly it will sometimes just fail to build (or
worse, run)
nix prs tend to have broken inner commits. it is often necessary to pick parts from later
commits in a pr to fix ci, in that case note this down as fixes taken from <commits...>
sometimes a commit may be so broken that it can't reasonably be fixed except by
squasing it with some other commit, in that case just squash them and not it down
somehow (either with multiple cherry picked from commit hashes or multiple commit
message+cherry-pick-hash blocks, depending on whether the fix messages were any
useful)

full prs
single-commit prs were mostly picked using cherry-pick -x -m1 to keep the association with the
upstream pr number for clarity. this implicitly squashes the pr into a single commit so it's only
useful for single-commit prs. (some prs that have broken intermediate commits also benefit from
this, but see above for that)

when pushing these to gerrit please set a topic like backport-<pr-number> using push options (-o
topic=backport-<pr-number> in git push) to delineate one picked pr from a pr that depends on it

https://wiki.lix.systems/link/7

Misc tips
buildbot user style to make the pulsing pills
bearable

FIXME: someone should PR this, now that we have the ability to patch buildbot

run all lix vm tests locally

@keyframes pulse_animation {
 0% { transform:scale(.9) }
 50% { transform:scale(1) }
 to { transform:scale(.9) }
}

.pulse {
 animation-duration: 10s !important;
}

tests=$(
 nix eval --json --impure \
 --apply '
 let f = n: t:
 if __isAttrs t
 then (if t.type or "" == "derivation"
 then (if t.system == __currentSystem
 then [n]
 else [])
 else __concatMap (m: f "${n}.${m}" t.${m}) (__attrNames t))
 else [];
 in f ".#hydraJobs.tests"
 ' \
 .#hydraJobs.tests \
 | jq -r '.[]'
)

https://github.com/NixOS/nixpkgs/pull/294353

check out current patchset of a cl by git alias
put this in a gitconfig that can configure aliases:

then run as git cocl <cl-number> . needs a git config remote.origin.gerriturl gerrit.lix.systems , or some other
url that ssh can connect to. (could've extracted it from the remote url but we didn't want to do that
much shell)

git stuff
git-revise
git-revise is a cool tool for splitting and shuffling commits in-memory without breaking your
working tree. it's great.

It also has some broken stuff with respect to gerrit commit-msg hooks. However, this can be fixed
(this is opt-in because some commit-msg hooks make unsound assumptions but the gerrit one
should be fine):

Making git clean clean the stuff that isn't removed by make clean
If you don't want to use git clean -x to remove all git-ignored stuff, but want to remove things that
are generated in Lix's build process but aren't removed by make clean , apply this patch: no-ignore-
not-cleaned.patch

nix build --no-link -L ${tests[@]}

[alias]
	cocl = !\
	 ps=$(\
	 ssh $(git config remote.origin.gerriturl) \
	 gerrit query --format=json --current-patch-set $1 \
 | jq -sr .[0].currentPatchSet.ref \
) && git fetch origin $ps && git checkout FETCH_HEAD && true

allow gerrit git hooks to run on git-revise
[revise "run-hooks"]
 commit-msg = true

https://github.com/mystor/git-revise
https://wiki.lix.systems/attachments/1
https://wiki.lix.systems/attachments/1

Building Locally
See hacking.md in the Lix repo for the main documentation. Extra tips can go here.

https://git.lix.systems/lix-project/lix/src/branch/main/doc/manual/src/contributing/hacking.md

RISC-V support
Goal: install lix on a riscv64-linux system

The target is a DevTerm R-01, so it's an AllWinner D1 RISC-V processor @ 1GHz, with 1GB of
memory and 32GB of microSD.

We can't run the Lix installer without building it, because there's no canned build for it. So let's try
building it natively:

This doesn't work because there's some conditional complication^Wcompilation that doesn't cover
riscv64. So we need to open self_test.rs and add an entry:

At this point, it will, in principle, build. In practice, however, 1GB is just not enough RAM. If you add
some swap it'll make it to the last step, but then it wants 1.5GB+ for that. I wouldn't try it on a
system with less than 2GB, and ideally more.

Ok, native build is a bust unless I want to let it thrash all night. So let's cross-compile it on ancilla ,
which is, conveniently, already running nixos.

The nix-installer flake doesn't come with riscv64 cross support, and rather than try to figure it out I
just winged it with nix-shell. I am skipping over a lot of false starts and blind alleys here as I ran
into things like dependency crates needing a cross-compiling gcc, or rust not having a stdlib on
riscv64-musl.

$ rustup
$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ RUSTFLAGS="--cfg tokio_unstable" cargo install --path .

 #[cfg(all(target_os = "linux", target_arch = "riscv64"))]
 const SYSTEM: &str = "riscv64-linux";

$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ $EDITOR shell.nix
with import <nixpkgs> {
 crossSystem.config = "riscv64-unknown-linux-gnu";
};
mkShell {
 nativeBuildInputs = with import <unstable> {}; [cargo rustup];

The build invocation is a bit more complicated here, because we need to tell it where to find the
linker:

Since we couldn't do a static musl build it needs the nix ld.so, but we can get around that!

}

$ nix-shell
[long wait for gcc to compile]

$ export RUSTUP_HOME=$PWD/.rustup-home
$ export CARGO_HOME=$PWD/.cargo-home
$ rustup default stable
$ rustup target add riscv64gc-unknown-linux-gnu
$ edit src/self_test.rs
[apply that same patch to SYSTEM]

$ RUSTFLAGS="--cfg tokio_unstable" cargo build \
 --target riscv64gc-unknown-linux-gnu \
 --config target.riscv64gc-unknown-linux-gnu.linker='"riscv64-unknown-linux-gnu-gcc"'
[another long wait]

$ file target/riscv64gc-unknown-linux-gnu/debug/lix-installer
target/riscv64gc-unknown-linux-gnu/debug/lix-installer:
 ELF 64-bit LSB pie executable, UCB RISC-V, RVC, double-float ABI,
 version 1 (SYSV), dynamically linked,
 interpreter /nix/store/g4xam7gr35sziib1zc033xvn1vy9gg8m-glibc-riscv64-unknown-linux-gnu-2.38-44/lib/ld-
linux-riscv64-lp64d.so.1,
 for GNU/Linux 4.15.0, with debug_info, not stripped

$ scp target/riscv64gc-unknown-linux-gnu/debug/lix-installer root@riscv:.
$ ssh root@riscv
./lix-installer
-bash: ./lix-installer: no such file or directory

ldd ./lix-installer
/nix/store/.../ld-linux-riscv64-lp64d.so.1 => /lib/ld-linux-riscv64-lp64d.so.1
[other output elided]

Sadly we can't actually use it to install, because nix_package_url needs a default value, and on RISC-
V, it doesn't have one! It's self_test.rs all over again except it doesn't manifest until runtime.

So, off to src/settings.rs we go. It doesn't need to be a valid URL, just something URL-shaped.

Rebuild, re-push, re-run:

Ok, missed a few places in settings.rs, let's put a quick and dirty hack in there:

/lib/ld-linux-riscv64-lp64d.so.1 ./lix-installer
The Determinate Nix installer (lix variant)
[...]

/// Default [`nix_package_url`](CommonSettings::nix_package_url) for unknown platforms
pub const NIX_UNKNOWN_PLATFORM_URL: &str =
 "https://releases.lix.systems/unknown-platform";

 #[cfg_attr(
 all(target_os = "linux", target_arch = "riscv64", feature = "cli"),
 clap(
 default_value = NIX_UNKNOWN_PLATFORM_URL,
)
)]

/lib/ld-linux-riscv64-lp64d.so.1 /opt/lix-installer install linux
Error:
 0: Planner error
 1: `nix-installer` does not support the `riscv64gc-unknown-linux-gnu` architecture right now

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 url = NIX_UNKNOWN_PLATFORM_URL;
 nix_build_user_prefix = "nixbld";
 nix_build_user_id_base = 30000;
 nix_build_user_count = 32;
 },

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 (InitSystem::Systemd, linux_detect_systemd_started().await)
 },

It also needs a tarball to install; jade_ kindly updated the flake for it to support riscv64, so we just
check it out (or, well, check out review branch 1444) and then nix build -L .#nix-riscv64-
linux.binaryTarball and away we go.

This, it turns out, also doesn't work, because the installer is hardcoded to expect the directory the
tarball contains to start with nix-* . You can either unpack and repack the tarball to meet that
requirement, or find all the places in lix-installer that assume that and edit them -- they're in
src/action/base/move_unpacked_nix.rs and src/action/base/setup_default_profile.rs .

Finally, this particular kernel lacks seccomp support -- in order to get it working, I had to edit the lix
(not lix-installer) package.nix and add (lib.mesonEnable "seccomp-sandboxing" false) to the meson flags.

And with that done, it works!

root@devterm-R01:~# uname -a && nix --version
Linux devterm-R01 5.4.61 #12 PREEMPT Wed Mar 30 14:44:22 CST 2022 riscv64 riscv64 riscv64 GNU/Linux
nix (Lix, like Nix) 2.90.0pre20240613_dirty

Branches
The Lix repository contains multiple releases in parallel. The branches work as follows:

main . This contains major tags (except for 2.90 because of an early branch-off. We might
fix that manually?), and is for the next major version of the software. This is where new
development typically happens.
release-* . These contain tags for *.0 and further minor releases on a major release. We
generally try to not backport things, since we would much rather get another major
release out. (subject to revision; we would really like to not have LTS releases, but distro
may make us do it?). These branches are development branches for a given release after
it is released.
(suggestion?) stable-* - Branch which is always pointed at the latest tag in that given
major version.

Version types
Full release, e.g. 2.90.0. This is a snapshot of HEAD that we believe is stable for release
and that we have fully performed out-of-tree validation on.
Beta release, e.g. 2.90.0-beta.1. This is something that we would consider running in more
or less any environment, given that we all run HEAD ourselves. This is an arbitrarily
selected snapshot of HEAD that we are deciding to produce installers for, and is not
special.
Release candidate, e.g. 2.90.0-rc1. This is something that we would just release but it
needs a bit more out-of-tree validation.

Git tags
Git tags are created with the format 2.90.0 .

Docker tags
latest - The latest minor version of the latest major version
2.90 and similar - The latest minor version of the 2.90 major release.
2.90.0 - Exactly 2.90.0 .

