
Lix contributors
Information you might want if you're thinking about contributing to Lix

Lix Beta Guide
Information organisation
Why Lix?
Style Guide

Language and terminology
Code
Operations

Working in the Lix codebase

Codebase overview
Freezes and recommended contributions
Bug tracker organisation
Gerrit
Improving build times
Backport guide
Misc tips
Building Locally
RISC-V support
Branches

Design documents

regexp engine investigation
Dreams
Language versioning
Docs rewrite plans
Nix lang v2

Flake stabilisation proposal
Observability and Protocol Design

Release names

Lix Beta Guide
Thank you for choosing to help us in our beta!

There is a lot of work-in-progress documentation and a lot of it is work in progress or awaiting
move to the wiki. Our apologies for this state, let us know if there is something you need.

If you run into any friction, please let us know. We would like to hear all your complaints, and this
beta is as much about testing our processes as it is about testing the software.

Getting yourself set up with an account (if
desired)
Sign in with GitHub on https://identity.lix.systems.

Note that your email will be visible on Gerrit if you use it, so change it on
https://identity.lix.systems if necessary.

A brief tour of the Lix systems
See Information Organisation for where information is.

The Lix sources are developed on Gerrit, built with Buildbot, and released on a Forgejo repo.

Contributor documentation for the project is maintained on this wiki. FIXME(jade): a lot of it is
awaiting migration onto the wiki from the private pad system, see tracking issue.

Status
We are confident enough to run nightly builds on the machines we care about. We expect Lix to
have, generally, fewer bugs than Nix 2.18, which is what you probably already have.

Notable changes:

REPL is much better
The debugger is no longer missing variables
--debugger-on-trace gives you a debugger for builtins.trace
The nix repl startup messages have been shortened

Many errors now print the value in question (cannot coerce set to string , expected list but got
string , etc.)

https://identity.lix.systems
https://identity.lix.systems
https://wiki.lix.systems/link/2
https://gerrit.lix.systems
https://buildbot.lix.systems
https://git.lix.systems/lix-project/lix
https://git.lix.systems/lix-project/meta/issues/8

Many bugs have been fixed, in general:
nix eval nixpkgs#hello now gives the derivation path instead of hanging
nix-env -qa lists all attribute paths leading to a package, instead of missing some

nix flake check -v prints what is being checked (and now we notice how slow that command
is)
Stack overflow is now caught properly
Performance improvements (8-20% faster than 2.18)
Correctness (inherit-from laziness fixed)
nix repl can :doc library functions.
nix repl can accept overlays as config files, see repl-overlays release note in the sources.

We have an installer, but it is not easy to use for HEAD builds. We also have a binary cache but we
need to do more work to make it actually hit for building HEAD.

On NixOS/nix-darwin
Use the overlay: https://git.lix.systems/lix-project/nixos-module

Please file bugs if this explodes the build of tooling you use, we can fix it in the overlay.

Flakes
Add Lix to your system configuration like so:

{
 inputs = {
 lix = {
 url = "https://git.lix.systems/lix-project/lix/archive/main.tar.gz";
 flake = false;
 };

 lix-module = {
 url = "https://git.lix.systems/lix-project/nixos-module/archive/main.tar.gz";
 inputs.nixpkgs.follows = "nixpkgs";
 inputs.lix.follows = "lix";
 };
 };

 outputs = {nixpkgs, lix-module, lix, ...}: {
 # or equivalent for darwin
 nixosConfigurations.your-box = nixpkgs.lib.nixosSystem {
 system = "x86_64-linux";
 modules = [

https://git.lix.systems/lix-project/nixos-module

You can then update it with nix flake update lix; nix flake update lix-module .

Not flakes
Also supported.

Add inputs for git+https://git.lix.systems/lix-project/lix and git+https://git.lix.systems/lix-project/nixos-module
to your preferred pinning tool.

Use in a NixOS module: e.g. imports = [(import "${your-pinning-thingy.lix-nixos-module}/module.nix" { lix =
your-pinning-thingy.lix; })];

Niv

Add the sources for the module and Lix itself, using ssh:// after registering your keys with
git.lix.systems:

Then, import the Lix NixOS module:

On other Linux or on macOS
Currently we are still working on the installer (see tracking project). It is possible to convert an
existing Nix install to Lix.

flakey-profile

 ./machines/your-box
 lix-module.nixosModules.default
];
 };
 };
}

$ niv add git -n lix-nixos-module --repo 'https://git.lix.systems/lix-project/nixos-module'
$ niv add git -n lix-lix --repo 'https://git.lix.systems/lix-project/lix'

 imports = [
 (import "${sources.lix-nixos-module}/module.nix"
 (let lix = sources.lix-lix.outPath;
 in {
 inherit lix;
 versionSuffix =
 "pre${builtins.substring 0 8 lix.lastModifiedDate}-${lix.shortRev}";
 }))
];

https://git.lix.systems/lix-project/-/projects/2

This is experimental. Some people have successfully used it on macOS. We have tested it on an
Arch Linux system installed a long time ago with the shell-based installer, and it works fine. This
method works by replacing your system profile with one that is built by simple Nix code with
flakey-profile.

You can rollback if it blows up by /nix/var/nix/profiles/default-{SECOND-HIGHEST-NUMBER}/bin/nix-env --
rollback --profile /nix/var/nix/profiles/default .

Clone https://git.lix.systems/lix-project/nixos-module.git , then, inside it, run sudo nix run --extra-experimental-
features 'nix-command flakes' .#system-profile.switch .

Finally, run sudo systemctl daemon-reload && sudo systemctl restart nix-daemon , or, for macOS:

Restoring a broken install after a macOS update

After updating macOS, you may get error messages like these:

You can fix this by opening "Disk Utility" and manually mounting the Nix Volume again. Then, run
these commands to re-install the lix daemon:

Manually, with nix profile

We::Qyriad have used these steps on macOS has it has seemed to work, but we would
recommend flakey-profile over it.

--preserve-env=SSH_AUTH_SOCK assumes that your SSH agent is important to access the Lix
repo
--priority 3 makes it symlink Lix over your existing Nix install

If you then run sudo nix --experimental-features 'nix-command flakes' profile list --profile
/nix/var/nix/profiles/default , you should get output similar to this:

sudo launchctl stop system/org.nixos.nix-daemon
sudo launchctl enable system/org.nixos.nix-daemon
sudo launchctl kickstart -k system/org.nixos.nix-daemon

~/.nix-profile: no such file or directory
/nix/var/nix/profile/default: no such file or directory
error: cannot connect to socket at '/nix/var/nix/daemon-socket/socket': Connection refused

sudo launchctl load /nix/var/nix/profiles/default/Library/LaunchDaemons/org.nixos.nix-daemon.plist
sudo launchctl kickstart -k system/org.nixos.nix-daemon

$ sudo -H --preserve-env=SSH_AUTH_SOCK nix --experimental-features 'nix-command flakes' profile install --
profile /nix/var/nix/profiles/default git+ssh://git@git.lix.systems/lix-project/lix --priority 3

You may then use sudo nix --experimental-features 'nix-command flakes' profile remove --profile
/nix/var/nix/profiles/default 1 to remove your original installation of Nix. This is (probably) optional.

Verification
You should now get something like the following:

Index: 0
Store paths: /nix/store/8ma7xas2nb0i3lq8mm7fpgalv94s8pzh-nss-cacert-3.92

Index: 1
Store paths: /nix/store/53r8ay20mygy2sifn7j2p8wjqlx2kxik-nix-2.19.2

Index: 2
Flake attribute: packages.aarch64-darwin.default
Original flake URL: git+ssh://git@git.lix.systems/lix-project/lix
Locked flake URL: git+ssh://git@git.lix.systems/lix-
project/lix?ref=refs/heads/main&rev=98b497a1a43a4ff39263ed5259f12c5d00b4d8c0
Store paths: /nix/store/8040hxr4rr8bpb5yp4b48709x3qs4bwb-nix-2.90.0

~ » nix --version
nix (Nix) 2.90.0-lixpre20240324-f86b965

Information organisation
Lix has a lot of information as a project, and we want to make it accessible in a way that it can be
found later if necessary.

There are various tools for keeping information in the project, and they have different purposes

Chat
Chat is good for:

Information that will be meaningless in hours
Ephemeral discussions, in general

The chat is expected to move way too fast to follow. As such:

Don't write things in chat that you expect to be found later
If discussions of design happen, write them down, at least by copy pasting into a pad and
adding the pad to the index
If tips and tricks are discussed, please write them down
Please do reviews on Gerrit so they are archived, rather than in chat
Write things down in the log if they are expected to be found

The log pad (https://pad.lix.systems/lix-event-log [private])
The log pad is intended as a tool to communicate what is going on in general, without having to
have everyone pay attention to chat too much.

It should be used for:

Updates on what we are working on, in addition to chat

It should not be used for:

Actually notifying people, necessarily

Pad (https://pad.lix.systems [private])
We anticipate that the pad service will be semi-permanently private by default, since it doesn't
support ACLs.

The pad is good for:

https://pad.lix.systems/lix-event-log
https://pad.lix.systems

Sketching out drafts of documents that aren't ready yet
Planning private things
Generally getting people on the same page about things in active design, making what
might be meeting notes, or similar.

The pad is not good for:

Information that should be available to users (unless it is planned to move)
Information that is not actively changing

N.B. For users who aren't in the Lix core team, the service returns 500 when you attempt to login.
This is a known issue that can't be fixed.

Wiki (https://wiki.lix.systems)
The wiki is good for:

Development process information, like you would find on https://rustc-dev-guide.rust-
lang.org/ for the Rust compiler, for instance.
Design documents

The wiki is not good for:

User facing documentation
Documentation that deserves to be reviewed
Actively writing a document in real time with others

Markdown files in the Lix repo
Markdown files in the Lix repo are good for:

Maintaining things that are tied directly to the code
Documentation that needs to be reviewed
User facing documentation

Markdown files in the Lix repo are bad for:

Quickly iterating on things
Design documents

Forgejo issues (https://git.lix.systems)
Our primary issue tracker is Forgejo issues.

https://github.com/hedgedoc/hedgedoc/issues/323
https://wiki.lix.systems
https://git.lix.systems

We are currently attempting to use the Forgejo project boards feature to communicate what people
are working on; it may be replaced with better Kanban software in the future. When making project
boards on Forgejo, make them on the lix-project organisation unless they are strictly contained
within one project.

The issue tracker is good for:

Actionable work
Bugs

The issue tracker is not good for:

Dreams or otherwise not actionable information that is a long term goal
Private information
Information that needs to be found later, design documentation

Where to put an issue
lix-project/lix, if it is contained within Lix (but is not more appropriate to put in the installer
e.g.)

If it is an upstream bug, tag its equivalent lix-import on
https://git.lix.systems/nixos/nix, and get someone with the bot token to run the issue
import script in maintainers/issue_import.py . (FIXME: someone ought to put that on a
cron job)
Please never file issues on our Nix mirror.

lix-project/installer, if it is the installer
lix-project/web-services, if it is infrastructure related
lix-project/meta, if it does not fit anywhere obvious and you just need it to put it on a
board
lix-project/nixos-module, if it is a packaging bug in that specifically

Gerrit (https://gerrit.lix.systems)
Gerrit is good for:

Reviewing code
Maintaining a record of code reviews

Gerrit is not good for:

Persisting information in a discoverable way to anyone in the future
Documentation

https://gerrit.lix.systems

Why Lix?
(page under construction. editor's note: parts of https://pad.lix.systems/lix-manifesto (PRIVATE) are
ported, parts need review before posting here)

(editor's note (ii): this page wants to be a contributor facing page, as opposed to the website page
that maybe will have more general info?)

We should introduce ourselves! We are the Lix team, and we are working on a fork of CppNix
focused on stability and user experience over features.

Core team members
puck (@puckipedia), she/her
hexchen (@hexchen), she/her
hexchen is working primarily on mantaining and extending the Lix project infrastructure.
Qyriad (@Qyriad)
Build system experts who delve way, way too deep into tooling
eldritch horrors (FIXME(horrors): github if desired?), they/them
wiggles (@9999years), she/her
Irenes (@IreneKnapp), they/them
jade (@lf-), they/them
jade is working on packaging, testing, infrastructure, tooling, review, stability, and a large
amount of the writing in Lix. They are currently studying Computer Engineering at UBC in
Canada.
raito (@RaitoBezarius). he/they
Raito is working on nixpkgs packaging, infrastructure, review in Lix.
They are a Tvix developer focusing on the store and the evaluator.
Kate Temkin (@ktemkin)
A performance art piece written live by a collective of hardware hackers & low-level
engineers. Kate works on Lix as part of a commitment to helping you do cool things, and
is seriously considering rewriting every bit of documentation ever to cross paths with Nix.
Lunaphied (@lunaphied), she/her (singular), they/them (plural)
Lunaphied spend a disproportionate amount of their time considering how to get FPGAs as
far from Earth as possible. When they’re not working on Space Stuff, they consider doing
the same for Nix regressions.

FAQ

https://pad.lix.systems/lix-manifesto
https://github.com/puckipedia
https://github.com/hexchen
https://github.com/Qyriad
https://github.com/9999years
https://github.com/IreneKnapp
https://github.com/lf-
https://github.com/RaitoBezarius
https://github.com/ktemkin
https://github.com/lunaphied

What is Lix anyway?
Lix is a fork of CppNix 2.18, focused on stability and the user experience of both users and
contributors. We want to create a safe platform to move Nix technology forward, as a piece of
critical infrastructure.

To this end, we have instituted a freeze on the core, where we apply high standards to changes to
the core of the system and pursue testing and stability as our first priority on the core. Our long
term vision is to shrink and decouple parts of the core, and move features like Flakes to the
periphery of the system.

To achieve our goals in user experience, we are allowing significantly more contributions, still with
tests, to the user facing surface of the system where there are fewer stability guarantees, and
explicitly define what is expected to be stable and what can change.

Part of our work on the interface of Lix is in Qyriad's project Xil, which is an experiment in an
alternate CLI for Nix implementations, which will potentially slowly merge with the Lix CLI.

Technical differences from CppNix
Lix is built with Meson, so language servers will just work on it
Lix does not include lazy trees, and does not intend to use the upstream implementation
of lazy trees; something like lazy trees is planned (FIXME: publish the planning document
for that).
Lix does not use libgit2 and does not intend to use it
Lix is entirely self-hosted in terms of infrastructure and uses Gerrit/Forgejo instead of
GitHub
nix repl can :doc library functions
nix repl can accept overlays as config files; see repl-overlays release note in the sources
Performance improvements (8-20% faster than 2.18)

Views on flakes
The Lix project acknowledges that flakes are the way that the majority of people use Nix today, and
does not intend to remove support for them. However, as part of our overall focus on stability and
dependability, some features of Flakes will be changed to be stricter.

Flakes are not the only way to write Nix language code in Lix, and we intend to provide a good
experience to flakes users, while also improving the experience for those not using flakes, by
evolving a compatible but more flexible flake-like abstraction in the periphery of the Lix system.

Why is Lix different from tvix?
tvix is a Nix implementation from the ground up in Rust, aiming to be compatible with CppNix, by
building a system from the ground up. It is developed by some of the same people. tvix also aims
to improve the stability of Nix technology, but with the approach of starting from the beginning.

https://wiki.lix.systems/link/9#bkmrk-freezes
https://github.com/qyriad/xil

Lix is intended to evolve CppNix into a stable foundation for future evolution, without breaking
clients along the way. Its goals are to aggressively pursue technical debt and remove the skeletons
from the closet, while remaining deliberate about behavioural changes through testing. Lix will
contain Rust components in the near future.

The two projects have similar goals but different approaches, and there will likely be cross-
pollination between them; though cross-pollination of code is difficult due to licensing.

Style Guide
Not just about code, a style guide is a list of decisions we've made, that we want to be consistent
about going forwards. It does not need to be comprehensive of all possible issues, nor does it need
to confine itself to trivial topics such as formatting. It's a tool for ourselves so we don't forget where
we've been, and can avoid solving the same problems again.

Don't be shy about adding to it. Things written here do impose some burden, but the hope is that
they lessen other burdens in the long run. Use your judgement about what's worth it.

Please fix style issues in existing code as you encounter them. Style is aspirational, a journey not a
destination. :)

Style Guide

Language and terminology
Language
Most existing Lix documentation is written in British English. We intend to continue with that.

Terminology
(FIXME: unsure if this should be in the style guide but ... it kinda should be -jade)

Nix language - Use this to refer to the language which haunts us all.
Nix - Nix refers to the technology. Used when referring to the Nix store, for example. Or,
to a Nix derivation. Lix is a Nix implementation.
CppNix - This is the preferred term for when it is necessary to refer to Nix, the software
that Lix is forked from, rather than the technology.
Lix - Use Lix when referring to the implementation. For example, "Install Lix".
nix , nix-build , etc - Use lowercase nix when referring to the nix command, which is still
supported by Lix.

Style Guide

Code
Code changes
Tests
If at all practicable, all new code should be tested to some extent. If writing a test is hard, we need
to prioritize making it easier, and potentially block features if that is the case.

Documentation
Reference documentation should be added, in addition to release notes (doc/manual/rl-next-dev), for
user visible changes.

For notable dev facing changes, consider adding release notes in doc/manual/rl-next-dev . This is not
critical for all changes; in some cases it may make more sense to write it up in dev documentation
instead, and indeed it may be ok to defer writing that dev documentation (it's helpful to create an
issue to not forget).

Benchmarking
Changes that touch the core of the evaluator or other performance critical code in Lix should be
benchmarked.

See bench/README.md for instructions.

Changelist size
If a CL is too long to review, it should be split up into smaller pieces with tests. The exact length
varies but passing the 1000 line mark should give significant thought to splitting.

When a CL is split, each commit should still be a valid state (tests passing, etc). If you
must, you can gate in-progress changes with a flag or similar until the final commit.
(Qyriad)

Commit messages

https://git.lix.systems/lix-project/lix/src/branch/main/bench

Include at least a sentence or two as to why you are making a commit. For example, it can be nice
to have the reproduction of a bug in the commit message. The commit message is the message for
your review.

There's no particular format or specific style for commit messages; just make sure they're
descriptive and informative.

C++
While we hope to migrate the lix interpreter from C++ to Rust eventually, C++ is a language that
is likely to exist for a long time, and we may end up having to use it in other contexts.

Lix is a C++20 codebase. Features of C++20 that compile on all supported platforms can be used.

NULL vs nullptr
nullptr where at all possible.

Static vs anonymous namespace
Prefer anonymous namespace, both currently exist in the codebase (jade: any other opinions?).

Type Aliases with typedef vs using
Prefer using declarations, as they can be used in more places, can be templatized, and have
clearer syntax. Both currently exist in the codebase. (Qyriad)

TODO/FIXME/XXX Comments
jade: this is not consistent with the conventions I use, needs further discussion imo (TODO: block in
pre-commit hook, used in local tree but should never pass code review, FIXME(name||feature): its
busted, someone should go fix it later, XXX: this is bad, we are writing down that it is ugly but
leaving it as-is as we didn't figure out a better way)

Something along the lines of:

TODO: acknowledgement that something is acceptably-for-now incomplete, especially if
the scope of fixing it is high or unknown
FIXME: this should be fixed before the feature or major change that it's a part of is
considered "ready"
XXX: this should not pass code review and should be considered a left-in mistake

Header files
Filenames
Headers should end with .hh . This reduces the likelihood anyone will try to include them from C
files, which would require following the rules of both languages and is easy to get wrong.

The implementation of the functions declared in a .hh file should be in a .cc file of the same name,
absent reasons to do otherwise.

Order-independence
Headers should not care what order they're loaded in.

The exception, for now, is config.h in the lix repo. This must always come before all other headers.
This observation should not be taken to imply it must always be that way, but at the moment it's
helpful to be aware of.

Idempotence
Use #pragma once , it helps. You can see this in most existing header files.

///@file and header documentation
///@file should be at the top of all nix headers - Doxygen and other tools use it to decide whether a
header should have documentation generated for definitions in it. See the relevant Doxygen
documentation for more details.

Strongly consider adding a description of the purpose of a header file at the top of it in with @brief
A sentence saying what it is for .

Examples:

Source files

/**
 * @file
 * @brief This header is for meow meow cat noises.
 */

/// @file
/// @brief meow meow meow

https://www.doxygen.nl/manual/docblocks.html#structuralcommands
https://www.doxygen.nl/manual/docblocks.html#structuralcommands

Filenames
Source files should end with .cc .

Nix language
Unsurprisingly Nix contains Nix code. Some amount is tests and a lot is packaging.

We use the nixfmt formatter on files outside the test suite. It's run through treefmt with pre-commit
hooks. Nix code outside the test suite is expected to be formatted.

Test suite files need not be formatted with the formatter at this time, but please consider doing so
with new tests that don't rely on formatting.

with
Prefer not to use with to bring things into scope as it obscures the source of variables and
degrades language server diagnostics.

Use let inherit (attrset) attrs instead.

Meson
Generally based on the style in Meson's docs made consistent and with a couple tweaks; notably
multiline function calls are done in "block style" (think like rustfmt does it), rather than aligned,
e.g.:

rather than:

Meson's docs go back and forth on this, but we also put a space before and after the colon for
keyword arguments (so win_subsystem : 'windows' , rather than win_subsystem: 'windows').

executable('sdlprog', 'sdlprog.c',
 win_subsystem : 'windows',
 dependencies : sdl2_dep,
)

executable('sdlprog', 'sdlprog.c',
 win_subsystem : 'windows',
 dependencies : sdl2_dep)

Style Guide

Operations
Operational Conventions
Code Review
Self Stamping and Merging
On our Gerrit, core members have permissions to +2 any arbitrary CL, because sometimes we
should be able to get something in quickly, and talk about it afterwards. In almost every case, the
author of a change should not +2 their own CL, however Lix members may use their best
judgement so long as they talk about it with the team when they can. Some cases where skipping
synchronous review is a good idea:

Reverting commits that accidentally broke main
Fixing typos in other peoples' CLs that you would have +2'd, then +2'ing the edited CL
Maybe typo fixes in main , though those can probably wait to be reviewed

Just make sure to talk about what you do :)

https://gerrit.lix.systems

Working in the Lix codebase
See also: See also: https://git.lix.systems/lix-
project/lix/src/branch/main/doc/manual/src/contributing/hacking.md

Working in the Lix codebase

Codebase overview
The Lix system is constituted of two broad parts, the evaluator and the store daemon. The two
pieces may run on the same machine or on different machines.

For example, in a remote build setup like https://hydra.nixos.org, one node is running several
evaluators in parallel, and builds are dispatched to several builder nodes.

(fyi to anyone editing this, double click the image in the preview to edit it)

Evaluator
The evaluator is an AST tree-walking evaluator with lazy semantics.

Notable files:

libexpr/value.hh, which defines the interface for evaluated values' interactions.
libexpr/eval.cc, where most of the evaluator is.
libexpr/nixexpr.cc, where the most of the nix::Expr class hierarchy is implemented, which
are the AST types for the evaluator.
libexpr/primops.cc, defining builtins.
libexpr/parser.y, the (current) yacc generated parser.
libexpr/lexer.l, the bison-generated lexer.

Known design flaws
GC issues (FIXME add details)

General tendencies to leak memory. Hydra restarts the evaluator every so often if it
runs out of memory.

AST based evaluator design limits perf
Stack tracing has issues that make the traces confusing (FIXME add details)

https://hydra.nixos.org
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/value.hh
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/eval.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/eval.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/primops.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/parser.y
https://git.lix.systems/lix-project/lix/src/branch/main/src/libexpr/lexer.l

Funniness with attr ordering and equality that nixpkgs depends on, which is fragile
Currently no real tools to diagnose this and stop nixpkgs from depending on it.
https://github.com/NixOS/nix/pull/8711 exists but regresses perf a lot and is not
mergeable.

Evaluation-time build dependencies (often called IFD) block the evaluator rather than
allowing other evaluation to proceed

This has significant downstream effects such as typical derivations building hand-
written large pieces rather than generated smaller pieces with IFD, since IFD is bad.

The eval cache both has false hits and false misses, and needs redesign.

Lix team plans
Rewrite parser (done, being ported for 2.91 by horrors)
Rewrite evaluator to be amenable to moving to bytecode (horrors) (long term)
Do something about GC (long term)

Store protocol
The store protocol is a hand rolled binary protocol with monotonically increasing versioning. It runs
over a few different transports such as ssh (src/libstore/ssh-store.cc) or Unix sockets (src/libstore/uds-
remote-store.cc).

Known design flaws
We cannot extend the store protocol (not that it is Good) because of the monotonic
version numbers: we must always be stuck at some released CppNix version. This
significantly moves up the need to replace it.

The code is significantly tangled with the current protocol design.

Lix team plans
Replace protocol with capnproto, transport with websockets?

Would likely be in addition to existing protocol; existing protocol likely would be run
through a translator.

Store daemon
The store daemon takes derivations (≈ execve args and dependencies) and realises (builds or
substitutes) them. It also implements store path garbage collection.

Lix's local store implementation currently uses a SQLite database as the source of truth for
mapping derivation outputs to derivations as well as maintaining derivation metadata.

Notable files:

https://github.com/NixOS/nix/pull/8711

libstore/build/local-derivation-goal.cc, which implements the local machine's builder
including the sandbox
libstore/build/entry-points.cc, the server side entry points of the store protocol
libstore/daemon.cc
libstore/uds-remote-store.cc, the client implementation of Unix socket stores

Known design flaws
Sandbox is of dubious security especially on Linux (where it is actually expected to be
somewhat secure)

Overall tangled code around the sandbox, particularly in platform specific parts
Poor self-awareness: daemon doesn't know what it is building

Due to this plus the protocol being frozen, it would be very hard to implement e.g.
dropping into a shell on failed builds

Substitutions are inherently a kind of build so they can't happen out of dependency order
or with better parallelism
SQLite database has a habit of getting corrupted (probably due to Lix-side misuse)

Lix team plans
Replace sandbox with other software, perhaps bwrap
Fix daemon self-awareness, add protocol level features to make this better
Rearchitect substitution to enqueue weakly ordered jobs that happen in parallel and can
resume downloads
Switch to xattrs as the source of truth of store path metadata such that the SQLite DB can
be completely rebuilt

https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/build/local-derivation-goal.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/build/entry-points.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/daemon.cc
https://git.lix.systems/lix-project/lix/src/branch/main/src/libstore/uds-remote-store.cc

Working in the Lix codebase

Freezes and recommended
contributions
Suggested contributions
Consider taking an issue marked E-help wanted: assign it to yourself and have a go. Feel free to
ask for help in the development channel. The Lix team wants these issues fixed, but they are not
high on our agenda to fix ourselves.

When in doubt, please ask the Lix team before beginning work, to make sure it is in line with our
current priorities.

Freezes
This document describes the state of freeze that Lix is in.

We do expect to have main always be in a state to run on machines you care about,
unconditionally. Nightly builds should not be a problem to run in production in any freeze state.

The purpose of this policy is to set expectations of what we are looking for in contributions, rather
than to set hard rules.

ice cube
No major features or code changes are accepted that touch the core (e.g. the hot paths of the
evaluator, the store), absent a good justification, good test coverage and a strong belief that they
will not cause regressions. In this state, we don't recommend external contributors do substantive
work outside the roadmap without speaking with the Lix team first. However, this is a guideline,
and such work can be done if discussed and planned carefully beforehand.

Simple surface features with low impact are likely to be accepted with tests, assuming that they do
not impact reliability.

Lix is currently in status "milkshake".“

https://git.lix.systems/lix-project/lix/issues?q=&type=all&state=open&labels=157&milestone=0&assignee=0&poster=0

New tests are gleefully accepted.

Bug fixes (with tests) are gleefully accepted.

For example, the following would require discussion with the Lix team before work begins, as it is
likely to not fit our goals:

Adding new features to ca-derivations
Doing substantial not-obviously-correct refactoring to the evaluator or daemon

For example, the following would likely be accepted assuming it has tests, without needing prior
discussion:

Backports of CLI UX features from CppNix
New UX features in the REPL or in output of other commands considered to not have
stable output
Backtrace improvements that don't touch hot paths
Bug fixes (to non load bearing bugs; be careful around evaluator semantics!)
Improvements to development UX

hard ice cream
Changes that improve maintainability of the core are accepted, with careful review depending on
their significance. Changes that add more complexity to the core need to pass scrutiny.

Features at the edge are accepted if they have low impact, assuming that they have tests.

soft serve
FIXME

milkshake
All kinds of changes are acceptable, but we still strive to keep main always as stable as possible
and a safe decision to daily-drive for all your nixy needs. Please don't jam the ice cream machine!

Working in the Lix codebase

Bug tracker organisation
We have a repo of directly imported nix bugs at https://git.lix.systems/nixos/nix. Please don't file
bugs in there, we want the IDs to match. When we import a bug, we might put notes on there as
we triage it, and potentially close it.

Bug labels on NixOS/nix
lix-import - Should be imported, we think it is still a bug
lix-ignore - We don't care about this bug, it probably doesn't affect us
lix-stability - Fixing this would improve the stability and reliability of Lix.

Dispositions:

lix-norepro - Tried repro on upstream 2.18.1 and did not repro
lix-retest-after-backports - Request that this be tested again once backports are done
lix-reproduces-2.18 - Confirmed to repro in 2.18.
lix-unclear-repro - Unsure how to repro but believe it affects lix
lix-closed-libgit2 - Caused by libgit2
lix-closed-lazy-trees - Caused by lazy trees

Closed, marginal
post-build-hook doesn't print a warning if not trusted-user
https://git.lix.systems/NixOS/nix/issues/9790#issuecomment-273
complaints about builtins.derivation https://git.lix.systems/NixOS/nix/issues/9774
rejecting flake config still asks for confirm again
https://git.lix.systems/NixOS/nix/issues/9788
complaints of "substituter disabled", but is their bin cache just broken?
https://git.lix.systems/NixOS/nix/issues/9749
warn on eol https://git.lix.systems/NixOS/nix/issues/9556

https://git.lix.systems/nixos/nix
https://git.lix.systems/NixOS/nix/issues/9790#issuecomment-273
https://git.lix.systems/NixOS/nix/issues/9774
https://git.lix.systems/NixOS/nix/issues/9788
https://git.lix.systems/NixOS/nix/issues/9749
https://git.lix.systems/NixOS/nix/issues/9556

Working in the Lix codebase

Gerrit
What is Gerrit and why do people like it?
Gerrit is a code review system from Google in a similar style to Google's internal Critique tool, but
based on Git, and publicly available as open source. It hosts a Git repo with the ability to submit
changes for review and offers mirroring to other repos (like https://git.lix.systems/lix-project/lix). It
has an entirely different review model to GitHub (and Forgejo, GitLab, etc that copy GitHub's
review model), where, instead of pull requests, you have changelists (CLs): reviews on individual
commits, with each revision of a commit being a different "patchset", rather than reviewing an
entire branch at a time. CLs may be merged one by one or in a batch.

Although this has some learning curve, we expect that you will find it pleasant to work with after
figuring it out. It has some rough edges and strong opinions that take some getting used to, but it
has served us well and saved us an inordinate amount of time both as reviewers and change
authors. The rest of this document gives some pointers on the workflows we use with Gerrit.

People like Gerrit because it makes the following things trivial or easy, all of which are somewhere
between annoying and impossible on GitHub modeled systems:

Gerrit produces better code:

Gerrit enforces good commit messages, since there is no second "pr message" so peoples'
commit messages get actually looked at with some care
Gerrit enforces good commit hygiene, since adding another commit is really just splitting
a commit with git revise -c or other tools; since there are no PR dependencies or branches
to worry about, splitting commits is no longer a big ask.

Relatedly, this directly makes reviews smaller since the overhead of doing another
change is low.

Gerrit makes reviewers' lives easier and reduces review round trips:

As a reviewer, you can look at what changed since you last reviewed, even in the
presence of rebases, by looking at the patchset history of a CL. This avoids pointless
rereview; you can actually diff versions of changes properly.
The change author generally merges the change after approval, without them needing
commit access. This means that they can do a final once-over of the change and make
sure that they are ok with its state before merging it. This reduces miscommunication
causing merging of unfinished code.
As a reviewer, you can edit someone's change and/or commit message to fix a typo (in
the web interface) and then stamp it, while giving them the final say on merging the

https://abseil.io/resources/swe-book/html/ch19.html
https://git.lix.systems/lix-project/lix

edited change.
You can give feedback like the following: "I would merge this as-is but you can consider
this feedback if you would like" and then let the change author decide to merge it.

Since the permission-requiring step in Gerrit is approving the change, not merging it,
every change author can have final say in when the change gets merged.

Review suggestions get applied as a batch without cluttering commit history in a
confusing manner.
You can download someone's change to look at it locally in one command that you can
copy paste from the Gerrit interface.

Gerrit makes your life easier as a contributor:

Submitting a new change is just a matter of committing it and pushing it. You don't need
to think about branches or the web interface or extra commands. Want to do more
changes building on it? Just commit them and push them.
Branches are not required and you can easily build off of other peoples' changes by
fetching them and rebasing against them; change dependencies are simply commit
parents. They can then be merged in whichever manner they will be merged.
If you are doing a larger change, it is natural to merge it piece by piece, adding little
improvements as you go, and putting the highest risk parts of it at the tip, making the
obviously good parts of the change land and keeping your diffs and rebases against main
smaller.
Gerrit makes it clear which comments still need action in a clean way, compared to
GitHub where resolved comments get regularly broken or disappear altogether.
Gerrit guesses (with reasonable accuracy) who a change is blocked on and shows it on the
dashboard with a little arrow next to their name, allowing you to see at a glance which
changes are your responsibility at a given time.
There is a rebase button that just works. Trivial non-conflicting rebases do not require a
rereview.

That being said, there are some downsides:

Gerrit is very mean to you if you don't have your commit history in a clean presentable
state, which takes some getting used to and Git does not make editing history easy, so it
does involve a little more fighting of Git. However, this also means that the reviews can be
of cleaner and smaller pieces of code with fewer unrelated changes.

This makes pushing work in progress code with questionable commit history harder;
see below for solutions to this.

Gerrit requires a little bit of local setup in the form of adding your SSH key or setting up
the HTTP password. It also requires a Git commit-msg hook, but nix develop automatically
does that for you.

Learning materials
https://gerrit-review.googlesource.com/Documentation/intro-user.html

https://gerrit-review.googlesource.com/Documentation/intro-user.html

https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHj
H-uk/view

Our installation
Gerrit is at https://gerrit.lix.systems

The Gerrit SSH server is running on port 2022. The repo URLs are:

ssh://{username}@gerrit.lix.systems:2022/lix
https://gerrit.lix.systems/lix if using HTTP auth; see Gerrit settings for setting an HTTP
password if desired

Hit the d key on any change to download it, which will give you the right URLs.

SSH config
You might like to add the following configuration to your ~/.ssh/config :

Basic workflow for a change
The unit of code review is a "change", which yields a single commit when "submitted" (merged).
The commit message is taken from the change description in Gerrit; in our experience this tends to
lead to more comprehensive commit messages.

For a change to be merged, it must have the following four "votes", in Gerrit's terminology:

Set by reviewers:
+2 Code-Review: the committer that reviewed this thinks it can be submitted as-is
(all users can vote +1/-1, expressing a weaker view on code acceptability)
+1 Has-Release-Notes: means the reviewer thinks your commit added relevant
release notes for that commit, or that it does not need any. This serves primarily as
a reminder.
+1 Has-Tests: means the reviewer thinks your commit added all the tests that
commit needs, or that it does not need additional tests. Like Has-Release-Notes, this

Host gerrit.lix.systems
 User YOUR_GERRIT_USERNAME
 Port 2022
 # Keep sessions open for a bit in the background to make connections faster:
 ControlMaster auto
 ControlPath /tmp/ssh-%r@%h:%p
 ControlPersist 120

https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://gerrit.lix.systems
https://man7.org/linux/man-pages/man5/ssh_config.5.html

serves primarily as a reminder.
Set automatically by CI:

+1 Verified: means CI successfully built for all our platforms and passed all tests

If you're newly part of the core team you will need to add yourself to the Gerrit lix group,
otherwise you can't set the Has-Release-Notes or Has-Tests labels. If you're not, this doesn't affect
you.

When all of those labels are set, a change becomes Ready to submit, in Gerrit's termology, and
Gerrit will give you a Submit button in the top right:

By convention, the change author has the final say on clicking the Submit button (note: this is
the opposite of the Github convention), and there is no special permission to merge a change once
it has been fully reviewed (the permissions are in the reviewer +2'ing it). This gives you a last
chance to have a look at your change before merging it.

Workflow tips
Local branches and commits
Gerrit is very mean to you if you don't have your local commit history in a linear presentable state,
which takes getting used to but it is very low overhead once you get used to it. In short, amended
commits become "patchsets", new commits become changes, and multiple commits help link your
changes together as a "relation chain".

Note: if you're coming from Chromium, this is different to how they use Gerrit, where multiple commits become
patchsets, and only the first commit on a local branch creates a new change.

Gerrit’s commit-msg hook generates a new Change-Id for each commit you make, which in turn
creates a new change that gets reviewed separately. To update an existing change after review
feedback, amend or squash your changes into your old commit, keeping its Change-Id unchanged,

https://wiki.lix.systems/uploads/images/gallery/2024-05/screenshot-20240507-165352.png
https://gerrit.lix.systems/Documentation/cmd-hook-commit-msg.html
https://gerrit.lix.systems/Documentation/user-changeid.html

then push.

Consider not pushing for review before it is clean, or split commits up with git-revise (good) or jj
(better) after the fact, amending as you work. If you want a backup of your changes, you can fork it
on Forgejo and push to that fork.

Basic Pushing
If you cloned the repo from Forgejo, be sure to change your remote URL to point to Gerrit before
continuing. Assuming your remote is called origin (which is the default):

git remote set-url origin ssh://{username}@gerrit.lix.systems:2022/lix

Then you can push to Gerrit with:

git push origin HEAD:refs/for/main

If you get tired of doing this every time, you can automate it by setting the .git/config as follows:

git config remote.origin.push HEAD:refs/for/main

You will have to do that in each fresh check-out. Once it's done, git push will work without
additional options.

If you get a “remote unpack failed” error while pushing, run git fetch then try again.

If you wish to push a change and immediately mark it as WIP, you can push with -o wip , or make
that the default behavior by checking Set new changes to "work in progress" by default in Gerrit's user
settings, under "Preferences".

Topics & Push Arguments

A Gerrit topic may be set on push with:

Which will create all pushed changes with the topic "foo". Topics are helpful for grouping long
series of related changes.

A change may also be marked as "work in progress" on push:

Gerrit has documentation on other push arguments you can use here, but it also takes a help
argument whose output is more canonical and might be easier to understand, which you can view
with:

git push origin HEAD:refs/for/main%topic=foo

git push origin HEAD:refs/for/main%wip

https://git.lix.systems/lix-project/lix
https://gerrit-review.googlesource.com/Documentation/cross-repository-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html

At the time of this writing (2024/06/26), that output looks like this:

git push origin HEAD:refs/for/main%help

$ git push origin @:refs/for/main%help
Total 0 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Processing changes: refs: 1, done
remote:
remote: Help for refs/for/branch:
remote:
remote: --base BASE : merge base of changes
remote: --cc CC : add CC to changes
remote: --create-cod-token : create a token for consistency-on-dema
remote: nd (default: false)
remote: --deadline NAME : deadline after which the push should
remote: be aborted
remote: --edit (-e) : upload as change edit (default: false)
remote: --hashtag (-t) HASHTAG : add hashtag to changes
remote: --help (-h) : display this help text (default: true)
remote: --ignore-automatic-attention-set-rules : do not change the attention set on
remote: (-ias, -ignore-attention-set) this push (default: false)
remote: --label (-l) LABEL+VALUE : label(s) to assign (defaults to +1 if
remote: no value provided)
remote: --merged : create single change for a merged
remote: commit (default: false)
remote: --message (-m) MESSAGE : Comment message to apply to the review
remote: --no-publish-comments (--np) : do not publish draft comments
remote: (default: false)
remote: --notify [NONE | OWNER | : Notify handling that defines to whom
remote: OWNER_REVIEWERS | ALL] email notifications should be sent.
remote: Allowed values are NONE, OWNER,
remote: OWNER_REVIEWERS, ALL. If not set, the
remote: default is ALL.
remote: --notify-bcc USER : user that should be BCC'd one time by
remote: email
remote: --notify-cc USER : user that should be CC'd one time by
remote: email
remote: --notify-to USER : user that should be notified one time
remote: by email
remote: --private : mark new/updated change as private

Pulling
Pulling from Gerrit will work normally. It's worth keeping in mind that sometimes a CL you're
working on has been edited in the web UI or by another contributor, so the commit in your repo
isn't the latest. Rebasing will usually make the duplicate go away; this is part of the normal rebase
semantics, not Gerrit magic. You might consider making rebase-on-pull your default.

Sandbox branches

This feature has some notable ways to shoot yourself in the foot. We still support it,
since it allows for running CI builds on things before they become proper CLs. If you
don't need that and don't want to worry about the footguns, consider using a branch on
a Forgejo fork for sharing WIP code.

In particular, if a commit is in any branch already including a sb/ branch, it will be
rejected with the error "no new changes" if it is later pushed to refs/for/main . This can
be worked around by amending all the commits so they are distinct, or by git push origin

HEAD:refs/for/main%base=$(git rev-parse origin/main) , which forces the merge-base

Use refs/heads/sb/USERNAME/* .

remote: (default: false)
remote: --publish-comments : publish all draft comments on updated
remote: changes (default: false)
remote: --ready : mark change as ready (default: false)
remote: --remove-private : remove privacy flag from updated
remote: change (default: false)
remote: --reviewer (-r) REVIEWER : add reviewer to changes
remote: --skip-validation : skips commit validation (default:
remote: false)
remote: --submit : immediately submit the change
remote: (default: false)
remote: --topic NAME : attach topic to changes
remote: --trace NAME : enable tracing
remote: --wip (-work-in-progress) : mark change as work in progress
remote: (default: false)
remote:
To ssh://gerrit.lix.systems:2022/lix
 ! [remote rejected] HEAD -> refs/for/main%help (see help)
error: failed to push some refs to 'ssh://gerrit.lix.systems:2022/lix'

https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html#base

CI rerun
Push the CL again with a no-changes commit amendment if you want to force CI to rerun.

Finding CLs to review
Consider bookmarking: https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-
Review%3C2

https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2
https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2

Working in the Lix codebase

Improving build times
Setup
Use a clang stdenv:

nix develop .#native-clangStdenvPackages

Then delete build/ if you were using gcc before. Enable build-time profiling with:

just setup; meson configure build -Dprofile-build=enabled

Then run the build: just compile .

Enabling build-time profiling itself costs about 10% of compile time but has no other disadvantage.

Build time reports
Use maintainers/buildtime_report.sh build/ to generate a build time report. This will tell you where all
our build time went by looking at the trace files and producing a badness summary.

Sample report
Build-time report sample

lix/lix2 » ClangBuildAnalyzer --analyze buildtimeold.bin
Analyzing build trace from 'buildtimeold.bin'...
**** Time summary:
Compilation (551 times):
 Parsing (frontend): 1465.3 s
 Codegen & opts (backend): 1110.9 s

**** Files that took longest to parse (compiler frontend):
 10478 ms: build/src/libstore/liblixstore.so.p/build_local-derivation-goal.cc.o
 10319 ms: build/src/libexpr/liblixexpr.so.p/primops.cc.o
 9947 ms: build/src/nix/nix.p/flake.cc.o

 9850 ms: build/src/libexpr/liblixexpr.so.p/eval.cc.o
 9751 ms: build/src/nix/nix.p/profile.cc.o
 9643 ms: build/src/nix/nix.p/develop.cc.o
 9296 ms: build/src/libcmd/liblixcmd.so.p/installable-attr-path.cc.o
 9286 ms: build/src/libstore/liblixstore.so.p/build_derivation-goal.cc.o
 9208 ms: build/src/libcmd/liblixcmd.so.p/installables.cc.o
 9007 ms: build/src/nix/nix.p/.._nix-env_nix-env.cc.o

**** Files that took longest to codegen (compiler backend):
 24226 ms: build/src/libexpr/liblixexpr.so.p/primops_fromTOML.cc.o
 24019 ms: build/src/libexpr/liblixexpr.so.p/primops.cc.o
 21102 ms: build/src/libstore/liblixstore.so.p/build_local-derivation-goal.cc.o
 16246 ms: build/src/libstore/liblixstore.so.p/store-api.cc.o
 14586 ms: build/src/nix/nix.p/.._nix-build_nix-build.cc.o
 13746 ms: build/src/libexpr/liblixexpr.so.p/eval.cc.o
 13287 ms: build/src/libstore/liblixstore.so.p/binary-cache-store.cc.o
 13263 ms: build/src/nix/nix.p/profile.cc.o
 12970 ms: build/src/nix/nix.p/develop.cc.o
 12621 ms: build/src/libfetchers/liblixfetchers.so.p/github.cc.o

**** Templates that took longest to instantiate:
 42922 ms: nlohmann::basic_json<>::parse<const char *> (69 times, avg 622 ms)
 32180 ms: nlohmann::detail::parser<nlohmann::basic_json<>, nlohmann::detail::i... (69 times, avg 466 ms)
 27337 ms: nix::HintFmt::HintFmt<nix::Uncolored<std::basic_string<char>>> (246 times, avg 111 ms)
 25338 ms: nlohmann::basic_json<>::basic_json (293 times, avg 86 ms)
 23641 ms: nlohmann::detail::parser<nlohmann::basic_json<>, nlohmann::detail::i... (69 times, avg 342 ms)
 20203 ms: boost::basic_format<char>::basic_format (492 times, avg 41 ms)
 17174 ms: nlohmann::basic_json<>::json_value::json_value (368 times, avg 46 ms)
 15603 ms: boost::basic_format<char>::parse (246 times, avg 63 ms)
 13268 ms: std::basic_regex<char>::_M_compile (28 times, avg 473 ms)
 12757 ms: std::__detail::_Compiler<std::regex_traits<char>>::_Compiler (28 times, avg 455 ms)
 10813 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_disjunction (28 times, avg 386 ms)
 10719 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_alternative (28 times, avg 382 ms)
 10508 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_term (28 times, avg 375 ms)
 9516 ms: nlohmann::detail::json_sax_dom_callback_parser<nlohmann::basic_json<... (69 times, avg 137
ms)
 9112 ms: std::__detail::_Compiler<std::regex_traits<char>>::_M_atom (28 times, avg 325 ms)
 8683 ms: std::basic_regex<char>::basic_regex (18 times, avg 482 ms)
 8241 ms: std::operator<=> (438 times, avg 18 ms)

 7561 ms: std::vector<boost::io::detail::format_item<char, std::char_traits<ch... (246 times, avg 30 ms)
 7475 ms: std::vector<boost::io::detail::format_item<char, std::char_traits<ch... (246 times, avg 30 ms)
 7309 ms: std::reverse_iterator<std::_Bit_iterator> (268 times, avg 27 ms)
 7131 ms: boost::stacktrace::basic_stacktrace<>::basic_stacktrace (246 times, avg 28 ms)
 6868 ms: boost::stacktrace::basic_stacktrace<>::init (246 times, avg 27 ms)
 6518 ms: std::reverse_iterator<std::_Bit_const_iterator> (268 times, avg 24 ms)
 5716 ms: std::__detail::_Synth3way::operator()<std::variant<nix::OutputsSpec:... (182 times, avg 31 ms)
 5303 ms: nix::make_ref<nix::SingleDerivedPath, nix::DerivedPathOpaque> (178 times, avg 29 ms)
 5244 ms: std::__uninitialized_move_a<boost::io::detail::format_item<char, std... (246 times, avg 21 ms)
 4857 ms: std::make_shared<nix::SingleDerivedPath, nix::DerivedPathOpaque> (178 times, avg 27 ms)
 4813 ms: std::__detail::_Synth3way::operator()<std::variant<nix::TextIngestio... (158 times, avg 30 ms)
 4648 ms: nlohmann::detail::json_sax_dom_callback_parser<nlohmann::basic_json<... (69 times, avg 67
ms)
 4597 ms: std::basic_regex<char>::basic_regex<std::char_traits<char>, std::all... (10 times, avg 459 ms)

**** Template sets that took longest to instantiate:
 55715 ms: std::__do_visit<$> (3603 times, avg 15 ms)
 47739 ms: std::__detail::__variant::__gen_vtable_impl<$>::__visit_invoke (11132 times, avg 4 ms)
 43338 ms: nlohmann::basic_json<$>::parse<$> (85 times, avg 509 ms)
 43097 ms: std::__detail::__variant::__raw_idx_visit<$> (2435 times, avg 17 ms)
 32390 ms: nlohmann::detail::parser<$>::parse (83 times, avg 390 ms)
 30986 ms: nix::HintFmt::HintFmt<$> (1261 times, avg 24 ms)
 30255 ms: std::__and_<$> (25661 times, avg 1 ms)
 29762 ms: std::unique_ptr<$> (2116 times, avg 14 ms)
 28609 ms: std::__tuple_compare<$>::__eq (2978 times, avg 9 ms)
 27560 ms: nlohmann::detail::parser<$>::sax_parse_internal<$> (167 times, avg 165 ms)
 27239 ms: std::variant<$> (1959 times, avg 13 ms)
 26837 ms: std::__invoke_result<$> (10782 times, avg 2 ms)
 25972 ms: std::tuple<$> (5714 times, avg 4 ms)
 24247 ms: std::__uniq_ptr_data<$> (2116 times, avg 11 ms)
 24061 ms: std::__result_of_impl<$> (9029 times, avg 2 ms)
 23949 ms: std::__uniq_ptr_impl<$> (2116 times, avg 11 ms)
 21185 ms: std::optional<$> (2502 times, avg 8 ms)
 21044 ms: std::pair<$> (4989 times, avg 4 ms)
 20852 ms: std::__or_<$> (24005 times, avg 0 ms)
 20203 ms: boost::basic_format<$>::basic_format (492 times, avg 41 ms)
 20184 ms: std::tie<$> (2895 times, avg 6 ms)
 19938 ms: nlohmann::basic_json<$>::create<$> (668 times, avg 29 ms)
 19798 ms: std::allocator_traits<$>::construct<$> (5720 times, avg 3 ms)

 19182 ms: std::__detail::__variant::_Variant_base<$> (1959 times, avg 9 ms)
 19151 ms: std::_Rb_tree<$>::_M_erase (2320 times, avg 8 ms)
 19094 ms: std::_Rb_tree<$>::~_Rb_tree (2022 times, avg 9 ms)
 18735 ms: nlohmann::basic_json<$>::basic_json (243 times, avg 77 ms)
 18546 ms: std::__detail::_Synth3way::_S_noexcept<$> (2542 times, avg 7 ms)
 17174 ms: nlohmann::basic_json<$>::json_value::json_value (368 times, avg 46 ms)
 17111 ms: nlohmann::detail::conjunction<$> (907 times, avg 18 ms)

**** Functions that took longest to compile:
 2091 ms: _GLOBAL__sub_I_primops.cc (../src/libexpr/primops.cc)
 1799 ms: nix::fetchers::GitInputScheme::fetch(nix::ref<nix::Store>, nix::fetc... (../src/libfetchers/git.cc)
 1388 ms: nix::Settings::Settings() (../src/libstore/globals.cc)
 1244 ms: main_nix_build(int, char**) (../src/nix-build/nix-build.cc)
 1021 ms: nix::LocalDerivationGoal::startBuilder() (../src/libstore/build/local-derivation-goal.cc)
 918 ms: nix::LocalStore::LocalStore(std::map<std::__cxx11::basic_string<char... (../src/libstore/local-
store.cc)
 835 ms: opQuery(Globals&, std::__cxx11::list<std::__cxx11::basic_string<char... (../src/nix-env/nix-env.cc)
 733 ms: nix::daemon::performOp(nix::daemon::TunnelLogger*, nix::ref<nix::Sto...
(../src/libstore/daemon.cc)
 589 ms: _GLOBAL__sub_I_tests.cc (../tests/unit/libutil/tests.cc)
 578 ms: main_build_remote(int, char**) (../src/build-remote/build-remote.cc)
 522 ms: nix::fetchers::MercurialInputScheme::fetch(nix::ref<nix::Store>, nix...
(../src/libfetchers/mercurial.cc)
 521 ms: nix::LocalDerivationGoal::registerOutputs[abi:cxx11]() (../src/libstore/build/local-derivation-
goal.cc)
 461 ms: nix::getNameFromURL_getNameFromURL_Test::TestBody() (../tests/unit/libutil/url-name.cc)
 440 ms: nix::Installable::build2(nix::ref<nix::Store>, nix::ref<nix::Store>,... (../src/libcmd/installables.cc)
 392 ms: nix::prim_fetchClosure(nix::EvalState&, nix::PosIdx, nix::Value**, n...
(../src/libexpr/primops/fetchClosure.cc)
 390 ms: nix::NixArgs::NixArgs() (../src/nix/main.cc)
 388 ms: update(std::set<std::__cxx11::basic_string<char, std::char_traits<ch... (../src/nix-channel/nix-
channel.cc)
 340 ms: _GLOBAL__sub_I_primops.cc (../tests/unit/libexpr/primops.cc)
 332 ms: nix::flake::lockFlake(nix::EvalState&, nix::FlakeRef const&, nix::fl... (../src/libexpr/flake/flake.cc)
 305 ms: _GLOBAL__sub_I_lockfile.cc (../src/libexpr/flake/lockfile.cc)
 300 ms: nix_store::opQuery(std::__cxx11::list<std::__cxx11::basic_string<cha... (../src/nix-store/nix-
store.cc)
 296 ms: nix::parseFlakeRefWithFragment(std::__cxx11::basic_string<char, std:...
(../src/libexpr/flake/flakeref.cc)

 289 ms: _GLOBAL__sub_I_error_traces.cc (../tests/unit/libexpr/error_traces.cc)
 278 ms: nix::ErrorTraceTest_genericClosure_Test::TestBody() (../tests/unit/libexpr/error_traces.cc)
 274 ms: CmdDevelop::run(nix::ref<nix::Store>, nix::ref<nix::Installable>) (../src/nix/develop.cc)
 269 ms: nix::flake::lockFlake(nix::EvalState&, nix::FlakeRef const&, nix::fl... (../src/libexpr/flake/flake.cc)
 257 ms: nix::NixRepl::processLine(std::__cxx11::basic_string<char, std::char... (../src/libcmd/repl.cc)
 251 ms: nix::derivationStrictInternal(nix::EvalState&, std::__cxx11::basic_s... (../src/libexpr/primops.cc)
 249 ms: toml::result<toml::basic_value<toml::discard_comments, std::unordere...
(../src/libexpr/primops/fromTOML.cc)
 238 ms: nix::LocalDerivationGoal::runChild() (../src/libstore/build/local-derivation-goal.cc)

**** Function sets that took longest to compile / optimize:
 10243 ms: std::vector<$>::_M_fill_insert(__gnu_cxx::__normal_iterator<$>, unsi... (190 times, avg 53 ms)
 9752 ms: bool boost::io::detail::parse_printf_directive<$>(__gnu_cxx::__norma... (190 times, avg 51 ms)
 8377 ms: void boost::io::detail::put<$>(boost::io::detail::put_holder<$> cons... (191 times, avg 43 ms)
 5863 ms: boost::basic_format<$>::parse(std::__cxx11::basic_string<$> const&) (190 times, avg 30 ms)
 5660 ms: std::vector<$>::_M_fill_insert(std::_Bit_iterator, unsigned long, bo... (190 times, avg 29 ms)
 4264 ms: non-virtual thunk to boost::wrapexcept<$>::~wrapexcept() (549 times, avg 7 ms)
 4023 ms: std::_Rb_tree<$>::_M_erase(std::_Rb_tree_node<$>*) (1238 times, avg 3 ms)
 3715 ms: boost::stacktrace::detail::to_string_impl_base<boost::stacktrace::de... (166 times, avg 22 ms)
 3705 ms: std::vector<$>::_M_fill_assign(unsigned long, boost::io::detail::for... (190 times, avg 19 ms)
 3326 ms: boost::basic_format<$>::str[abi:cxx11]() const (144 times, avg 23 ms)
 3070 ms: void boost::io::detail::mk_str<$>(std::__cxx11::basic_string<$>&, ch... (191 times, avg 16 ms)
 2839 ms: boost::basic_format<$>::make_or_reuse_data(unsigned long) (190 times, avg 14 ms)
 2321 ms: std::__cxx11::basic_string<$>::_M_replace(unsigned long, unsigned lo... (239 times, avg 9 ms)
 2213 ms: std::_Rb_tree<$>::_M_get_insert_hint_unique_pos(std::_Rb_tree_const_... (203 times, avg 10 ms)
 2200 ms: boost::wrapexcept<$>::~wrapexcept() (549 times, avg 4 ms)
 2093 ms: std::vector<$>::~vector() (574 times, avg 3 ms)
 1894 ms: bool std::__detail::_Compiler<$>::_M_expression_term<$>(std::__detai... (112 times, avg 16 ms)
 1871 ms: int boost::io::detail::upper_bound_from_fstring<$>(std::__cxx11::bas... (190 times, avg 9 ms)
 1867 ms: boost::wrapexcept<$>::clone() const (549 times, avg 3 ms)
 1824 ms: std::_Rb_tree_iterator<$> std::_Rb_tree<$>::_M_emplace_hint_unique<$... (244 times, avg 7
ms)
 1821 ms: toml::result<$> toml::detail::sequence<$>::invoke<$>(toml::detail::l... (93 times, avg 19 ms)
 1814 ms: nlohmann::json_abi_v3_11_2::detail::serializer<$>::dump(nlohmann::js... (39 times, avg 46 ms)
 1799 ms: nix::fetchers::GitInputScheme::fetch(nix::ref<$>, nix::fetchers::Inp... (1 times, avg 1799 ms)
 1771 ms: boost::io::detail::format_item<char, std::char_traits<char>, std::al... (190 times, avg 9 ms)
 1762 ms: std::__detail::_BracketMatcher<$>::_BracketMatcher(std::__detail::_B... (112 times, avg 15 ms)
 1760 ms: std::_Function_handler<$>::_M_manager(std::_Any_data&, std::_Any_dat... (981 times, avg 1 ms)
 1733 ms: std::__detail::_Compiler<$>::_M_quantifier() (28 times, avg 61 ms)

 1694 ms: std::__cxx11::basic_string<$>::_M_mutate(unsigned long, unsigned lon... (251 times, avg 6 ms)
 1650 ms: std::vector<$>::vector(std::vector<$> const&) (210 times, avg 7 ms)
 1650 ms: boost::io::basic_altstringbuf<$>::overflow(int) (190 times, avg 8 ms)

**** Expensive headers:
178153 ms: ../src/libcmd/installable-value.hh (included 52 times, avg 3426 ms), included via:
 40x: command.hh
 5x: command-installable-value.hh
 3x: installable-flake.hh
 2x: <direct include>
 2x: installable-attr-path.hh

176217 ms: ../src/libutil/error.hh (included 246 times, avg 716 ms), included via:
 36x: command.hh installable-value.hh installables.hh derived-path.hh config.hh experimental-features.hh
 12x: globals.hh config.hh experimental-features.hh
 11x: file-system.hh file-descriptor.hh
 6x: serialise.hh strings.hh
 6x: <direct include>
 6x: archive.hh serialise.hh strings.hh
 ...

173243 ms: ../src/libstore/store-api.hh (included 152 times, avg 1139 ms), included via:
 55x: <direct include>
 39x: command.hh installable-value.hh installables.hh
 7x: libexpr.hh
 4x: local-store.hh
 4x: command-installable-value.hh installable-value.hh installables.hh
 3x: binary-cache-store.hh
 ...

170482 ms: ../src/libutil/serialise.hh (included 201 times, avg 848 ms), included via:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh
 14x: store-api.hh nar-info.hh hash.hh
 11x: <direct include>
 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh
 7x: libexpr.hh value.hh source-path.hh archive.hh
 6x: fetchers.hh hash.hh
 ...

169397 ms: ../src/libcmd/installables.hh (included 53 times, avg 3196 ms), included via:
 40x: command.hh installable-value.hh
 5x: command-installable-value.hh installable-value.hh
 3x: installable-flake.hh installable-value.hh
 2x: <direct include>
 1x: installable-derived-path.hh
 1x: installable-value.hh
 ...

159740 ms: ../src/libutil/strings.hh (included 221 times, avg 722 ms), included via:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh serialise.hh
 19x: <direct include>
 14x: store-api.hh nar-info.hh hash.hh serialise.hh
 11x: serialise.hh
 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh
 7x: libexpr.hh value.hh source-path.hh archive.hh serialise.hh
 ...

156796 ms: ../src/libcmd/command.hh (included 51 times, avg 3074 ms), included via:
 42x: <direct include>
 7x: command-installable-value.hh
 2x: installable-attr-path.hh

150392 ms: ../src/libutil/types.hh (included 251 times, avg 599 ms), included via:
 36x: command.hh installable-value.hh installables.hh path.hh
 11x: file-system.hh
 10x: globals.hh
 6x: fetchers.hh
 6x: serialise.hh strings.hh error.hh
 5x: archive.hh
 ...

133101 ms: /nix/store/644b90j1vms44nr18yw3520pzkrg4dd1-boost-1.81.0-
dev/include/boost/lexical_cast.hpp (included 226 times, avg 588 ms), included via
:
 37x: command.hh installable-value.hh installables.hh built-path.hh realisation.hh hash.hh serialise.hh
strings.hh
 19x: file-system.hh
 11x: store-api.hh nar-info.hh hash.hh serialise.hh strings.hh

 7x: primops.hh eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh
 7x: libexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh
 6x: eval.hh attr-set.hh nixexpr.hh value.hh source-path.hh archive.hh serialise.hh strings.hh
 ...

132887 ms: /nix/store/h2abv2l8irqj942i5rq9wbrj42kbsh5y-gcc-12.3.0/include/c++/12.3.0/memory (included
262 times, avg 507 ms), included via:
 36x: command.hh installable-value.hh installables.hh path.hh types.hh ref.hh
 16x: gtest.h
 11x: file-system.hh types.hh ref.hh
 10x: globals.hh types.hh ref.hh
 10x: json.hpp
 6x: serialise.hh
 ...

 done in 0.6s.

Manually looking at traces
Note that the summary in the report can miss details like why one particular header is bad; to find
that out, use a trace viewer to inspect the JSON trace file; we suggest rg -t json -uu error\.hh build/ |
less to find some .cc trace that the bad header (in this example, error.hh) appears in.

You can look at individual file traces by opening some file like
build/src/libcmd/liblixcmd.so.p/command.cc.json in https://ui.perfetto.dev or another Chrome-trace-json
compatible trace viewer like Speedscope.

This will produce a flamegraph of the trace (screenshot shows Perfetto):

https://ui.perfetto.dev
https://www.speedscope.app/

The most general spans of compile time are at the top, and the constituent spans are shown as you
go down.

Successful build time reduction CLs
cl/588: 15%
cl/1351: 10%

See the build-time-optimisation Gerrit topic for more related things.

https://wiki.lix.systems/uploads/images/gallery/2024-05/kCJNfXnY2ri6yT0o-image-1717044340710.png
https://gerrit.lix.systems/c/lix/+/588
https://gerrit.lix.systems/c/lix/+/1351
https://gerrit.lix.systems/q/topic:%22build-time-optimisation%22

Working in the Lix codebase

Backport guide
Don't forget, using Gerrit is a bit different than other systems.

single commits
try git cherry-pick -x first. if this works, excellent. if not, apply the usual cherry-picking procedures:

track down apply failures to intermediate changes. maybe cherry-pick those first if they're
not too awful, but experience shows that they usually are too awful
anything that touches the store or contains the word Accessor in the vicinity probably
needs to be picked about and rewritten from scratch
always test ofc, even if something applies cleanly it will sometimes just fail to build (or
worse, run)
nix prs tend to have broken inner commits. it is often necessary to pick parts from later
commits in a pr to fix ci, in that case note this down as fixes taken from <commits...>
sometimes a commit may be so broken that it can't reasonably be fixed except by
squasing it with some other commit, in that case just squash them and not it down
somehow (either with multiple cherry picked from commit hashes or multiple commit
message+cherry-pick-hash blocks, depending on whether the fix messages were any
useful)

full prs
single-commit prs were mostly picked using cherry-pick -x -m1 to keep the association with the
upstream pr number for clarity. this implicitly squashes the pr into a single commit so it's only
useful for single-commit prs. (some prs that have broken intermediate commits also benefit from
this, but see above for that)

when pushing these to gerrit please set a topic like backport-<pr-number> using push options (-o
topic=backport-<pr-number> in git push) to delineate one picked pr from a pr that depends on it

https://wiki.lix.systems/link/7

Working in the Lix codebase

Misc tips
pyright is not dealing with import paths correctly
for functional2
I don't know why it's doing this but it seems to be assuming that the functional2 test suite is
relative to the workspace root.

You can jam the following into :CocLocalConfig for vim, and probably the workspace config for
VSCode and it should fix it.

buildbot user style to make the pulsing pills
bearable

FIXME: someone should PR this, now that we have the ability to patch buildbot

run all lix vm tests locally

{
 "python.analysis.include": ["tests"],
 "python.analysis.extraPaths": ["tests"],
}

@keyframes pulse_animation {
 0% { transform:scale(.9) }
 50% { transform:scale(1) }
 to { transform:scale(.9) }
}

.pulse {
 animation-duration: 10s !important;
}

https://github.com/NixOS/nixpkgs/pull/294353

check out current patchset of a cl by git alias
put this in a gitconfig that can configure aliases:

then run as git cocl <cl-number> . needs a git config remote.origin.gerriturl gerrit.lix.systems , or some other
url that ssh can connect to. (could've extracted it from the remote url but we didn't want to do that
much shell)

git stuff
git-revise

tests=$(
 nix eval --json --impure \
 --apply '
 let f = n: t:
 if __isAttrs t
 then (if t.type or "" == "derivation"
 then (if t.system == __currentSystem
 then [n]
 else [])
 else __concatMap (m: f "${n}.${m}" t.${m}) (__attrNames t))
 else [];
 in f ".#hydraJobs.tests"
 ' \
 .#hydraJobs.tests \
 | jq -r '.[]'
)

nix build --no-link -L ${tests[@]}

[alias]
	cocl = !\
	 ps=$(\
	 ssh $(git config remote.origin.gerriturl) \
	 gerrit query --format=json --current-patch-set $1 \
 | jq -sr .[0].currentPatchSet.ref \
) && git fetch origin $ps && git checkout FETCH_HEAD && true

git-revise is a cool tool for splitting and shuffling commits in-memory without breaking your
working tree. it's great.

It also has some broken stuff with respect to gerrit commit-msg hooks. However, this can be fixed
(this is opt-in because some commit-msg hooks make unsound assumptions but the gerrit one
should be fine):

Making git clean clean the stuff that isn't removed by make clean
If you don't want to use git clean -x to remove all git-ignored stuff, but want to remove things that
are generated in Lix's build process but aren't removed by make clean , apply this patch: no-ignore-
not-cleaned.patch

allow gerrit git hooks to run on git-revise
[revise "run-hooks"]
 commit-msg = true

https://github.com/mystor/git-revise
https://wiki.lix.systems/attachments/1
https://wiki.lix.systems/attachments/1

Working in the Lix codebase

Building Locally
See hacking.md in the Lix repo for the main documentation. Extra tips can go here.

https://git.lix.systems/lix-project/lix/src/branch/main/doc/manual/src/contributing/hacking.md

Working in the Lix codebase

RISC-V support
Goal: install lix on a riscv64-linux system

The target is a DevTerm R-01, so it's an AllWinner D1 RISC-V processor @ 1GHz, with 1GB of
memory and 32GB of microSD.

We can't run the Lix installer without building it, because there's no canned build for it. So let's try
building it natively:

This doesn't work because there's some conditional complication^Wcompilation that doesn't cover
riscv64. So we need to open self_test.rs and add an entry:

At this point, it will, in principle, build. In practice, however, 1GB is just not enough RAM. If you add
some swap it'll make it to the last step, but then it wants 1.5GB+ for that. I wouldn't try it on a
system with less than 2GB, and ideally more.

Ok, native build is a bust unless I want to let it thrash all night. So let's cross-compile it on ancilla ,
which is, conveniently, already running nixos.

The nix-installer flake doesn't come with riscv64 cross support, and rather than try to figure it out I
just winged it with nix-shell. I am skipping over a lot of false starts and blind alleys here as I ran
into things like dependency crates needing a cross-compiling gcc, or rust not having a stdlib on
riscv64-musl.

$ rustup
$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ RUSTFLAGS="--cfg tokio_unstable" cargo install --path .

 #[cfg(all(target_os = "linux", target_arch = "riscv64"))]
 const SYSTEM: &str = "riscv64-linux";

$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ $EDITOR shell.nix
with import <nixpkgs> {
 crossSystem.config = "riscv64-unknown-linux-gnu";
};
mkShell {

The build invocation is a bit more complicated here, because we need to tell it where to find the
linker:

Since we couldn't do a static musl build it needs the nix ld.so, but we can get around that!

 nativeBuildInputs = with import <unstable> {}; [cargo rustup];
}

$ nix-shell
[long wait for gcc to compile]

$ export RUSTUP_HOME=$PWD/.rustup-home
$ export CARGO_HOME=$PWD/.cargo-home
$ rustup default stable
$ rustup target add riscv64gc-unknown-linux-gnu
$ edit src/self_test.rs
[apply that same patch to SYSTEM]

$ RUSTFLAGS="--cfg tokio_unstable" cargo build \
 --target riscv64gc-unknown-linux-gnu \
 --config target.riscv64gc-unknown-linux-gnu.linker='"riscv64-unknown-linux-gnu-gcc"'
[another long wait]

$ file target/riscv64gc-unknown-linux-gnu/debug/lix-installer
target/riscv64gc-unknown-linux-gnu/debug/lix-installer:
 ELF 64-bit LSB pie executable, UCB RISC-V, RVC, double-float ABI,
 version 1 (SYSV), dynamically linked,
 interpreter /nix/store/g4xam7gr35sziib1zc033xvn1vy9gg8m-glibc-riscv64-unknown-linux-gnu-2.38-44/lib/ld-
linux-riscv64-lp64d.so.1,
 for GNU/Linux 4.15.0, with debug_info, not stripped

$ scp target/riscv64gc-unknown-linux-gnu/debug/lix-installer root@riscv:.
$ ssh root@riscv
./lix-installer
-bash: ./lix-installer: no such file or directory

ldd ./lix-installer
/nix/store/.../ld-linux-riscv64-lp64d.so.1 => /lib/ld-linux-riscv64-lp64d.so.1
[other output elided]

Sadly we can't actually use it to install, because nix_package_url needs a default value, and on RISC-
V, it doesn't have one! It's self_test.rs all over again except it doesn't manifest until runtime.

So, off to src/settings.rs we go. It doesn't need to be a valid URL, just something URL-shaped.

Rebuild, re-push, re-run:

Ok, missed a few places in settings.rs, let's put a quick and dirty hack in there:

/lib/ld-linux-riscv64-lp64d.so.1 ./lix-installer
The Determinate Nix installer (lix variant)
[...]

/// Default [`nix_package_url`](CommonSettings::nix_package_url) for unknown platforms
pub const NIX_UNKNOWN_PLATFORM_URL: &str =
 "https://releases.lix.systems/unknown-platform";

 #[cfg_attr(
 all(target_os = "linux", target_arch = "riscv64", feature = "cli"),
 clap(
 default_value = NIX_UNKNOWN_PLATFORM_URL,
)
)]

/lib/ld-linux-riscv64-lp64d.so.1 /opt/lix-installer install linux
Error:
 0: Planner error
 1: `nix-installer` does not support the `riscv64gc-unknown-linux-gnu` architecture right now

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 url = NIX_UNKNOWN_PLATFORM_URL;
 nix_build_user_prefix = "nixbld";
 nix_build_user_id_base = 30000;
 nix_build_user_count = 32;
 },

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 (InitSystem::Systemd, linux_detect_systemd_started().await)

It also needs a tarball to install; jade_ kindly updated the flake for it to support riscv64, so we just
check it out (or, well, check out review branch 1444) and then nix build -L .#nix-riscv64-
linux.binaryTarball and away we go.

This, it turns out, also doesn't work, because the installer is hardcoded to expect the directory the
tarball contains to start with nix-* . You can either unpack and repack the tarball to meet that
requirement, or find all the places in lix-installer that assume that and edit them -- they're in
src/action/base/move_unpacked_nix.rs and src/action/base/setup_default_profile.rs .

Finally, this particular kernel lacks seccomp support -- in order to get it working, I had to edit the lix
(not lix-installer) package.nix and add (lib.mesonEnable "seccomp-sandboxing" false) to the meson flags.

And with that done, it works!

 },

root@devterm-R01:~# uname -a && nix --version
Linux devterm-R01 5.4.61 #12 PREEMPT Wed Mar 30 14:44:22 CST 2022 riscv64 riscv64 riscv64 GNU/Linux
nix (Lix, like Nix) 2.90.0pre20240613_dirty

Working in the Lix codebase

Branches
The Lix repository contains multiple releases in parallel. The branches work as follows:

main . This contains major tags (except for 2.90 because of an early branch-off. We might
fix that manually?), and is for the next major version of the software. This is where new
development typically happens.
release-* . These contain tags for *.0 and further minor releases on a major release. We
generally try to not backport things, since we would much rather get another major
release out. (subject to revision; we would really like to not have LTS releases, but distro
may make us do it?). These branches are development branches for a given release after
it is released.
(suggestion?) stable-* - Branch which is always pointed at the latest tag in that given
major version.

Version types
Full release, e.g. 2.90.0. This is a snapshot of HEAD that we believe is stable for release
and that we have fully performed out-of-tree validation on.
Beta release, e.g. 2.90.0-beta.1. This is something that we would consider running in more
or less any environment, given that we all run HEAD ourselves. This is an arbitrarily
selected snapshot of HEAD that we are deciding to produce installers for, and is not
special.
Release candidate, e.g. 2.90.0-rc1. This is something that we would just release but it
needs a bit more out-of-tree validation.

Git tags
Git tags are created with the format 2.90.0 .

Docker tags
latest - The latest minor version of the latest major version
2.90 and similar - The latest minor version of the 2.90 major release.
2.90.0 - Exactly 2.90.0 .

Design documents
This category contains design documents written by the Lix team, which may or may not be
implemented.

Design documents

regexp engine investigation
nix uses libstdc++'s std::regex . it uses whatever version of libstdc++ the host system has.

which it invokes in both std::regex_replace std::regex_match modes.

nix occasionally uses the flags std::regex::extended and std::regex::icase which determine the
available features - it's always either no flags, or both of these together. there's also a couple
things that use the flag std::regex::ECMAScript . when the constructor is called without a flags
parameter, the flags default to std::regex::ECMAScript (see method signature in C++23 32.7.2), so
really we have only two cases.

std::cregex_iterator and std::sregex_iterator are used.

there's a header regex-combinators.hh which defines regex::group and regex::list and a couple
others that are unused. but those are just trivial textual things, not extensions, so we can ignore
the file.

getting the C++ standard
someday when C++23 is official you will be able to pirate the PDF. otherwise, you can clone
https://github.com/cplusplus/draft and check out the tag n4950 which is the current formally
adopted working draft as of 2024-03-14 and is intended to have the same technical content as the
final standard. you can then invoke make in the source subdirectory which will produce std.pdf .
you will need LaTeX installed. if you're ever not sure which working draft is the one that became a
particular version of the standard, Wikipedia will probably tell you...

(personally I install texlive.combined.scheme-full from nixpkgs on all my machines that have room for
it, but this is surely more than necessary, it just makes me feel warm and fuzzy -- Irenes)

chapter 32 is the one that documents regular expressions.

open questions that require reading the standard
what are all the syntactic and semantic constructs we need to support?

required functionality
the extended flag, per the C++ standard, "Specifies that the grammar recognized by the regular
expression engine shall be that used by extended regular expressions in POSIX.". it references

POSIX, Base Definitions and Headers, Section 9.4.

the ECMAScript flag "Specifies that the grammar recognized by the regular expression engine shall
be that used by ECMAScript in ECMA-262, as modified in [section 32.12 of the C++ standard]." it
references ECMA-262 15.10. the changes in 32.12 are important and probably do create real
compatibility issues for us, though fortunately it's only a single page.

if we complete this chart we can use it to assess which existing engines would meet our needs, or
how much of a pain in the ass it would be to make a new one

the columns are the two ways it gets invoked

extended + icase ECMAScript

Syntactic constructs -- --

(TODO: fill in every construct here)

Semantics -- --

Case-insensitivity yes ?

(TODO: fill in other behaviors here)

Design documents

Dreams
This page documents the dreams of the Lix team. These are features which we have generally not
roadmapped yet, and which may not have complete and thoroughly thought-through plans, and
which we would like to think about more completely before implementing. We are writing them
down publicly so that others can dream with us.

language versioning https://wiki.lix.systems/books/lix-contributors/page/language-
versioning
split the evaluator into a separate process, interact with it only via rpc (horrors)
bytecode evaluator with all the possible trappings (horrors)

allows arbitrary runtime-define breakpoints, watchpoints, program inspection and
manipulation
interacts with rpc to allow perfect lsp hosts, better debuggers etc

new gc for the evaluator to replace bdw, prototype/template for gc in eventual rust
evaluator (horrors)
flakes as a library of code that provides new nix subcommands (horrors, others)
lix.conf prelude-path = for system-wide subcommands a la git (horrors)

also can make per-repo lix * commands (jade, janik)
eval caching with a memoize :: str -> any -> any builtin that is overridden by scopedImport
with a unique, deterministic subscope (horrors)

import := f: memoize (toString f) (scopedImport builtins f) (horrors)
flake eval caching entire attrpaths: mapAttrsRecursive (n: const (memoize n)) on all
scopes/attrsets in the "flake" (horrors)
lazyUpdate is a disaster waiting to happen, turns all values into even worse errors sources
than simple thunks (and is deeply intrusive to the evaluator for little gain). why not special
attrset ops __members, __getMember to simulate lazyUpdate in a library that doesn't infect
all future versions of the language and can be transpiled when necessary? (horrors)

pureImport is too fine grained, store paths as boundaries actually make sense (and
give memoize stable starting scopes), pure eval mode could be "ask thing to pack
itself up, add to store, eval from there like nix flakes do" (horrors)

all authoritative information about the store attached to store objects, not an sqlite
database (eg in xattrs or similar) (horrors)

would make overlayfs stores for containers/vms trivial
redo the lazy trees infra on the basis of "virtual" store paths and mountpoints (turning eg
a zip file into a virtual mountpoint /nix/store/lazy/thing.zip/...) (horrors)

notably do not use fuse for this, just a pure vfs implementation
fully decouple evaluator and store (horrors)

tvix has kind of done this with EvalIO, lix needs it too (otherwise the eval-process
split will not be possible)

store operations state, like "what derivations were realized in the last build" (Qyriad)

https://wiki.lix.systems/books/lix-contributors/page/language-versioning
https://wiki.lix.systems/books/lix-contributors/page/language-versioning

"what attrpath was this accessed by to build"
profiler for nix code (jade)
nix develop replace store path but actually good, with bind mounts (jade)
nixos-rebuild gets unfucked perhaps with samueldr code (jade)
we kinda wanna have inherits consistent by container type such that you can write inherit
(thing) [a b c] to create a list, inherit (thing) { a b c } to create a set, or nest those in
existing lists or sets to extend them in-place like current inherit (horrors)
unbreak the io model (horrors)

currently nix has an async io model shoved into a sync runtime, and an async model
that can't decide whether it's push or pull. this sucks

a dependency graph for builds which explains why different dependencies are being built
store path truncated to unique names in output...?

native nix-output-monitor (nom) style (slash bazel-style) output formatting (showing a live
updating list of stuff being built/fetched, with warnings stacking up above it)

web viewer for the build graph as it is happening with a nice live log viewer (jade)
relatedly: show closure graphs nicely (jade)

make the store properly multi-tenant, with things like, e.g. authentication and maybe
even certain http done via hooks on the client side (jade)

see e.g. https://git.lix.systems/lix-project/lix/issues/254
overall improve the clarity of what is actually running on the daemon vs the client
(jade)

replace nix profile with something not broken with a clear ramp to either have a manifest
mutably in the store or operate mutably against a configuration directory. ideally out of
tree. (jade)
fix fs builtin problems (jade)

can't read symlinks
filterSource gives no metadata of interest esp on symlinks
can't synthesize symlinks or files into the store except by serious nar abuse

(Zoe) We can imagine a generalized transformSource builtin which presents an
fs subtree as a nested attrSet containing the full metadata and contents of all
files and links in the subtree, and expects an nested attrSet in the same format
as output, allowing arbitrary transformations in pure nix code. As long any
other other operations that touch touch the file system are disallowed inside
the transformation function (evaluating other paths, building derivations,
pathExists, etc) this should be a consistent operation. There may be
performance/usability reasons to not use this precise interface, but I think it's a
good abstract guide stone of what to strive for.

is lib.filesets made of evil? how does it work?
answer: it's filterSource in a trench coat with some set operations

what if you could take a source tree of a monorepo and rewrite cross project
symlinks to refer to store paths of those other projects so you don't copy the entire
giant repo to store every time and can have each subproject as its own store path?
what if you had a fetch git subtree primitive that was free if there's no modification?

(Zoe) It's a little trickier than just that because if you want a filtered git subtree
you need some way to ensure that the filter hasn't changed either.

https://git.lix.systems/lix-project/lix/issues/254

Better facilities for writing performant code (Zoe)
Builtins should document their algorithmics and when they cause files to be written
to the store
More opt-in persistent data structures with different performance tradeoffs that can
be coerced to from the standard values

RRB vectors or similar for lists
HAMT or similar for attrSets

should allow using arbitrary values as keys
will probably need an explicit distinction between strings and symbols
also a separate set type, so you don't have to bother faking it with null
keys

StringView like type for strings
or maybe just convert in place the first time we'd need to get the length?

Doing something about IFD being bad (raito, pennae?):
https://pad.lix.systems/sW0nbPohTgqy2UdIJjPeUA

fixing ux
some way of having a persistent short lived evaluator for fast completions in CLI (Dawn)
✨ fancy ✨ repl, a la IPython and pry (Qyriad)
Support instance of Lix running locally off the main page to try out

Obviously WebAssembly schenanigans involved
replacing nixos-option (jade)

CLI commands should be possible to actually deprecate (jade)
a debug macro like rust's dbg! https://doc.rust-lang.org/std/macro.dbg.html
pipe operator (Qyriad)

and either haskell's $ or left pipe operator
hyperlinked sources in docs (jade)
a VFS mirror of the Nix store that puts the names first, attaches a more descriptive label if
necessary, and then the hash, literally just for convenience (Qyriad)

slaying the hydra
these are problems that make hydra sad

make -jsem jobserver built into Lix (horrors actually wrote one years ago)
this would allow much better build density in Lix and eliminate most need to tune
NIX_BUILD_CORES
see: https://github.com/NixOS/nixpkgs/pull/143820, it turns out the make jobserver
protocol is actually horrible, and we should instead do this with a reasonable socket
protocol injected into the sandbox by Lix

externalize deciding which host to build things on (delroth, jade)

https://pad.lix.systems/sW0nbPohTgqy2UdIJjPeUA
https://doc.rust-lang.org/std/macro.dbg.html
https://github.com/NixOS/nixpkgs/pull/143820

this is necessary because /etc/nix/machines is really stupid and doesn't have nearly
enough information to decide whether a machine can admit a job.

make the remote protocol not suck (jade)
latency is bad
a lot of stuff blocks in ways it only dubiously needs to?

what if you could have build cost estimates on large installations, which could go into
scheduling decisions? (jade)

galaxy brained idea: build a neural net for derivation build costs for scheduling
purposes. probably take as input the derivation show json with the hashes removed
and then a pile of historical hydra data
do we have the data to do this? we want cpu time, io, and (ugh these would be very
fake though because measuring memory is fraught) memory stats for builds.
schedule on machines that have space for the expected cpu-time/memory-time/io-
time of the derivation

make the nix daemon know what is actually building (jade)

Design documents

Language versioning
This document is extremely a draft. It needs some editing and discussion before it can be made
into a useful thing. It's been simply copy pasted out of the pad in its current form.

See also
FIXME: piegames langver ideas

musings
puck: honestly, having language version as part of a scopedImport-style primop would be funny
horrors: we're shitposting about setting language version from the source accessor

horrors: use features...; file head clause
jade: this can be combined into feature sets like editions or such. we might become
ghc haskell but whatever.

horrors: [some kind of file head clause and/or propagation is the] only real way out of this
mess that doesn't require a package manager in the package manager
jade: yeah. doing it from flakes seems initially sane until you realise you can import below
the flake in the same git repo and then blegh
horrors: an ambient minimum-language-version binding in builtins that can be
scopedImport'ed for flake support on top of this

horrific writeup
basic mechanism
add a new syntactic element that is only valid at the head of a file and used only to declare
language requirements. nix versions that cannot satisfy all requirements must reject this element
to situations in which two nix versions parse the same file differently, or even evaluating the same
file to different derivation hashes. any kind of comment as used by eg GHC is not viable for nix for
this reason.

proposed syntax for the first implementation: use $($feature: ident)+;

anything ahead of this directive could be either unversioned nix code or versioned nix code (see
below for details), but since the directive is only valid at the head of a file or expression this "code"

can only be comments. this kind of locks us into supporting the current comment syntax forever,
but the comment syntax is rather fine so this won't be a problem.

each feature may declare a syntactical requirement for the file, a semantic requirement, or
possible both (cf rust editions, or perl use v<something>).

features may be global, namespaced to their implementations, or live in a reserved experimental
namespace an implementation can add to and remove from as it wishes with absolutely no
guarantee of future evaluatility.

syntactic features
syntax is entirely local to the file itself and has few to no intercompatibility constraints with other
code. a very useful syntax requirement would something like no-url-literals , which might strip the
syntactic ability to parse url-like sequences of characters into strings and, rather than nix currently
does the experimental feature of the same name simply throwing a parse error, parse them as eg a
lambda with a sequence of divisions in its body.

(realistically no-url-literals would not appear in practice, instead it should be implied by use itself
since url literals are such an obvious misfeature)

semantic features
semantic features produce evaluation changes that could be achieved any other way. examples of
this are:

the recent change that evalutes x in inherit (x) names... at most once overall rather than
once per inherited name accessed
potential extensions to the string context mechanism
new types of values

semantic changes may escape the expression that requires them and usually some of amount of
cross-compatibility with other semantic versions must be given. using the same examples as
above, considerations can include:

observable side-effects changing (if x includes a call to trace)
getContext returning sets an outside use may not expect
value types being unknown to outside users and causing failures

this is in fact a full classification of cross-compatibility issues: side-effects changing, evaluation
outputs changing, and evaluation inputs changing. side-effects need not be considered very much
since nixlang is supposed to be pure and all side-effects that are not part of the store interface
must already be considered incidental. evaluation outputs changing can be handled by optional lint
or runtime warnings when a versioned evaluation structure passes a semantic version boundary
without being annotated as an intentional behavioral leak. evaluation inputs changing is a non-
issue because nix plugins and the ExternalValue infrastructure already make it impossible to rely on
the type system being fully specified at the time an expression is written

inter-file inter-actions
by default language features must not be propagated across an unadorned import boundary to
retain compatibility with existing nix code (eg nixpkgs, which will not be able to switch for quite
some time). in some circumanstances it is however required to propagate language features across
imports to provide a consistent and meaningful interface, eg in the case of a hypothetical
requiredLanguageFeatures attribute for a flake. to allow for both of these requirements to peacefully
coexist we add a new primop:

if the imported expression selects a different set of language features the features specified by
scopedImportUsing are ignored.

scopedImportUsing is available in the builtins set and crucially, can be replaced. this allows a
hypothetical flake implementation to replace both scopedImportUsing and import with its own
versions that provide propagation behaviors that might be expected from such a library:

importing within the same flake simply propagates the language features as-is
importing across flake boundaries first resolves the language versions used by the
imported-from flake, then applies and propagates using these features. if the imported-
from flake then imports code from elsewhere this cycle repeats and can eventually restore
the language features set to its original value when importing code next to the code
importing the importing code

scopedImportUsing
:: { features ? <current language features> :: AttrSetOf bool
 ## ^ language features as would be specified by `use ...;`.
 ## selecting a default-off feature is achieved by setting its key to `true`,
 ## deselecting a default-on feature is achieve by setting its key to `false`.
 ## nesting is not needed because features are identifiers. future changes to
 ## the use interface may extend the type of this set.
 , newGlobals ? env: env :: AttrSetOf Any -> AttrSetOf Any
 ## ^ function to produce the new global environment. it receives the default globals
 ## set for the target expression language features (as calculated form `features` and
 ## the target `use` clause) and produces a new set.
 ## `scopedImport` behavior is recovered by setting this to `const newEnv`.
 }
-> PathLike
^ imported path as in `scopedImport`
-> Any
^ import result. may be cached, most immediately using the intransparent internal
object id of the provided features and the globals set. this mimics the beavior
or `import` in cppnix

importing out of a flake boundary (as might be possible in an impure mode) resets the
propagated language feature set as if it had never been set in the first place

additionally the current language features might be made available through a builtin value
languageFeatures by such a replacement of scopedImportUsing .

builtins versioning, global versions
a language feature may add or remove elements of builtins or the global environment. as
mentioned earlier this does not pose a large hazard since evaluation is sufficiently unespecified
that this must already be expected to happen.

interactions with eg nixpkgs lib
nixpkgs lib (and other libraries) will have to cater to the smallest common denominator when
exposing library functions/constants as they do now. if we change a function to have a different
prototype and a library reexports it from builtins to its own namespace the language features used
by the code importing the library do not matter. to make this problem less unbearable we may
want to introduce a concept of library objects and a "use library" directive like eg python from ...
import ... that can pass language features down to the library being imported in some way.

as a first approximation is would be sufficient to encourage libraries to version their namespaces in
such a way that accessing a namespace that relies on language features not present in the current
evaluator will fail to evaluate (eg by providing the library itself as a plain set and each version as
an attribute that (lazily) imports the specific version of the library needed to fulfill the requested
version).

bad ideas for features to remove/change in the
first langver

remove url literals
remove with
remove rec (including __overrides)
remove let { body = ...; ... }
remove or contextual keyword, either rework or make a real keyword
extend listToAttrs prototype to also accept 2-tuples instead of name-value-attrpairs
remove __sub and similar overloading

Feature detection
jade: I think we might want to be able to feature detect certain features, e.g. new builtin args,
which can be done without, but we would like to know if they are there.

builtins.nixVersion has been defanged, which means that an alternate cross impl compatible
mechanism needs to be created.

Minimally thought-through proposal
builtins.features is an attribute set, where individual attribute names are exposed with the value true
if they are implemented by a given implementation.

Attribute names are of the format:

"domainname.feature", for example, "systems.lix.somefeature".

Design documents

Docs rewrite plans
Here, for now (public edit link): https://pad.lix.systems/lix-docs-planning

https://pad.lix.systems/lix-docs-planning

Design documents

Nix lang v2
The Nix language unfortunately is full of little and big design accidents. Only so much can be fixed
without breaking backwards compatibility.

Our goal is to design an improved Nix language revision, working title "Nix 2". To keep the scope
manageable, the first iteration of language improvements will be restricted to be mostly backwards
compatible and only require minimal migration effort. This allows us to test the process on a
smaller scale, as well as allows us to get the quick and easy improvements out as soon as possible
for others to use.

Join the discussion on Matrix: #nix-lang2:lix.systems

The rough action plan is:

1. Fork the grammar and gate its usage behind a feature flag.
2. Use the new grammar as a playground to experiment and implement fixes and

improvements to the language, free of any constraints of backwards compatibility.
3. Figure out language versioning and prepare interoperability.
4. Provide a migration path, stabilize the new language, and make it available to users.

Initial language changes
Fixing floats

Status: Implemented in https://gerrit.lix.systems/c/lix/+/1979
Confidence: High

Grammar: All floats must have a digit before the . . This is a hard requirement for making some of
the other proposed syntax changes parse unambiguously in the first place.

Moreover, floating point semantics are currently broken in several ways. They need to strictly
follow IEE754 double semantics instead.

Given that such a switch is not easy to make in a safe way, as an intermediate solution all floating
point operations should be forbidden, effectively making floating point values opaque to the
language.

Set slicing
Partially adapted from https://github.com/NixOS/rfcs/pull/110.

https://nixos.wiki/wiki/Nix_Language_Quirks
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw
https://matrix.to/#/#nix-lang2:lix.systems
https://wiki.lix.systems/books/lix-contributors/page/language-versioning
https://git.lix.systems/lix-project/lix/src/commit/a957219df2b7f360695f884f45fe4802240b9755/doc/manual/src/language/operators.md#comparison

Status: Draft implemented in https://gerrit.lix.systems/c/lix/+/1987
Confidence: High

Sets can be sliced using set.[key1, key2] and set.{key1, key2} . The first returns a projection of the
listed keys into a list, the second one a subset. All keys must be identifiers (or string identifiers),
scoped to the attribute set.

[TBD: it is unclear as to whether interpolation is useful and how easy it is to implement] Identifiers
may be interpolated: set.[key1, ${key2}] is equivalent to [set.key1, set.${key2}] , set.{key1, ${key2}}
is equivalent to { key1 = set.key1; ${key2} = set.${key2}; } .

Slicing into lists is a replacement for using with :

List and Set unpacking
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1988 and
https://gerrit.lix.systems/c/lix/+/1989
Confidence: Mid

In a list, elements which are lists themselves can be unpacked with the * operator. They will be
concatenated in-place. ["hello", *list, "world"] is equivalent to ["hello"] ++ list ++ ["world"]

This can be easily combined with set slicing. The operator precedence facilitates patterns like the
following:

dependencies = python.pkgs.[
 arabic-reshaper
 babel
 beautifulsoup4
 bleach
 celery
 chardet
 cryptography
];

 configureFlags = [
 "--without-ensurepip"
 "--with-system-expat"
 *(optionals (!(stdenv.isDarwin && pythonAtLeast "3.12")) [
 # ./Modules/_decimal/_decimal.c:4673:6: error: "No valid combination of CONFIG_64, CONFIG_32 and
_PyHASH_BITS",
 # https://hydra.nixos.org/build/248410479/nixlog/2/tail
 "--with-system-libmpdec",

In a set, one can unpack elements like this:

let baz = { bar = "foo"; }; in { foo = "bar"; *baz.{bar}; }

This combines well with optionalAttrs :

])
 *(optionals (openssl != null) [
 "--with-openssl=${openssl.dev}",
])
];

{
 meta = with lib; {
 maintainers = with maintainers; [matthewbauer qyliss];
 platforms = platforms.unix;
 license = licenses.bsd2;
 };

 HOST_SH = stdenv'.shell;

 *lib.optionalAttrs stdenv'.hasCC {
 # TODO should CC wrapper set this?
 CPP = "${stdenv'.cc.targetPrefix}cpp";
 };

 *attrs;

 *lib.optionalAttrs (attrs.headersOnly or false) {
 installPhase = "includesPhase";
 dontBuild = true;
 };

 # Files that use NetBSD-specific macros need to have nbtool_config.h
 # included ahead of them on non-NetBSD platforms.
 postPatch = lib.optionalString (!stdenv'.hostPlatform.isNetBSD) ''
 set +e
 grep -Zlr "^__RCSID
 ^__BEGIN_DECLS" $COMPONENT_PATH | xargs -0r grep -FLZ nbtool_config.h |
 xargs -0tr sed -i '0,/^#/s//#include <nbtool_config.h>\n\0/'
 set -e

It also allows to have "local" let bindings for just some of the keys, without having to move them
out of the entire attrset:

As with convential set declaration, duplicate keys are not allowed.

Note that the pattern of inherit (foo) bar baz; is equivalent to *foo.{bar, baz}; .

Pipe operator function application: |>

This is being worked on in RFC 148

Status: Implemented and released in Nix and Lix as an experimental feature flag pipe-
operator
Confidence: High

In nixpkgs , there is the lib.pipe function which will allows to write g f a as pipe a [f g] . Especially
with deep nested and complicated data transformations, it makes the code flow from left to right
and thus easier to read. Sadly, it is under-used because many people are not aware of it.

The fundamental problem it tries to solve though is that function calls are prefix, i.e. that a data
processing chain with multiple entries is read from right to left. (Or, when adding parentheses, from
the inside to the out side.)

Therefore, we introduce the |> operator. a |> f |> g is equivalent to g(f(a)) .

List indexing
Status: Not implemented yet
Confidence: High

 '' + attrs.postPatch or "";

}

{
 key1 = "value1";
 *let
 stuff = "foo";
 in
 {
 inherit stuff;
 key2 = stuff;
 };
}

https://github.com/NixOS/rfcs/pull/148

TODO link to RFC

Introduce list.INDEX on lists as syntax sugar for builtins.elemAt list index . list.${index} interpolation for
dynamic variables also works like it does for attribute sets. To avoid type ambiguities at runtime,
ident.${expr} is reserved for dynamic attribute access only, dynamic list indexing still requires
using builtins.elemAt

Optional: We could even introduce .last .tail and .length as attributes. Need to think about that. Is
a bad idea because of dynamic typing.

Function list destructuring
Status: Not implemented yet
Confidence: Mid

The same way as function arguments can be destructured into an attrset with {…} , it should also
work with lists. Some restrictions:

Because order matters, arguments cannot have default values.
Like with the attrset syntax, ... indicates that the list may have more arguments.
For now, the ... must always be at the end. This restriction can easily be lifted some time
in the future.
Unlike in other languages, capturing the rest of the list (for example in head:tail patterns
like in Haskell) is not possible because of performance considerations.

This, together with list indexing syntax, will make tuple-style code constructs a first-class citizen of
the language. Replacing nameValuePair alone is expected to give significant performance gains
(short lists are heavily optimized in the evaluator).

Disallow inner-attribute merging
Status: Not implemented yet
Confidence: Mid

Nix has syntax sugar for merging attrsets within attrset declarations: { a = {}; a.b = "hello"; } will be
fused into { a = { b = "hello"; }; } at parse time.

This feature, only rarely used, does not compose well with other features like rec attrsets, leading
to unintuitive semantics and potential foot guns: https://git.lix.systems/lix-project/lix/issues/350,
https://github.com/NixOS/nix/issues/6251, https://github.com/NixOS/nix/issues/9020,
https://github.com/NixOS/nix/issues/11268,
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw#inherit-from-scopes-differently-than-inherit

Since these problems would be deeply aggravated by the new set unpacking syntax (defined
below), it is best to completely remove this feature altogether. Since it only is convenience syntax
sugar, no replacement syntax is necessary.

Expand inherit syntax
Status: Not implemented yet
Confidence: Low

The inherit syntax is adapted to be both more powerful and more consisten with the slicing syntax.
The inherit (from) is made redundant and deprecated for removal in a future language revision.
Inherit can also be used outside of attrsets and let bindings now, and will behave as if it was in a let
binding.

Proper keywords for null , true and false
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1986
Confidence: High

I don't know why these are builtins instead of keywords but at this point I assume it's because it
was faster to implement.

Proper syntax nodes for all arithmetic expressions
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1981
Confidence: High

No more __sub and __lessThan . These had no reason but laziness to exist in the first place.

? and or operator
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1990
Confidence: Mid
Write pkgs.foo.bar or default as pkgs ? foo.bar : default , remove the or pseudo-keyword
Unlike with or , no attribute access is needed: value ?: default

?: is more powerful than or , since it also works outside of .

inherit lib.{mkIf, types};
inherit {
 lib.mkif,
 types.{attrsOf, listOf, string}
};
Mixing old with new style syntax: Do we want to allow this?
inherit
 lib.mkif
 types.{attrsOf, listOf, string}
;
This only makes sense within attrsets really
inherit foo;

[Optional] For consistency, function default arguments use ?: instead of ?
?: has a lower priority than function application, which solves a lot of the confusion
? operator for testing attribute set keys becomes a special case of ?: without default
value.

This does not change any of the semantics of ? , but fixes the weird operator
precedence as well

[Optional] Introduce a new operator .? , also inspired by Kotlin. foo.?bar is equivalent to if
foo != null then foo.bar else null .

C# uses ?. instead

All line endings must be \n
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1992
Confidence: High

The current handling of \r is so jank that we'd better do without.

CRLF line endings are allowed within the file for Windows compat, but in strings the line endings
get consistently normalized to LF only.

All files must be valid UTF-8 text
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1991
Confidence: High

The world runs on UTF-8, and most tools these days expect UTF-8 encoded input by default.
There's no reason to allow other encodings or invalid byte sequences.

Sane escape sequences for strings
Status: Implemented in https://gerrit.lix.systems/c/lix/+/2089 and
https://gerrit.lix.systems/c/lix/+/2104
Confidence: Mid
Escape sequences are restricted from anything to \t , \r , \n , \" , \$, \\ , \x… , \u{…}
\ followed by a line break escapes it, a.k.a. string continuation escape (Rust)
$$ does not escape $$ anymore, so $${} is now a dollar with an interpolation

Indented strings
Don't strip indentation of first line

Status: Implemented in https://gerrit.lix.systems/c/lix/+/2104
Confidence: High

The current behavior is just weird, both for single-line strings (commonly used for unquoted ") and
multi-line strings. The new behavior is also what Haskell does (in its new multiline strings proposal).

Indented strings work with tabs
Status: Implemented in https://gerrit.lix.systems/c/lix/+/2105
Confidence: High

Programming languages may be opinionated, but making some features work only with space
indentation is crossing a line.

Tabs and spaces can be mixed as part of the string's content, but not for the string's indentation.
Indentation is calculated based on the longest common prefix.

Old cruft to remove
https://wiki.lix.systems/link/21#bkmrk-bad-ideas-for-featur

Remove unquoted URLs
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1982
Confidence: High

DSL or not, you'll survive typing those two additional extra characters.

Remove let {} syntax
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1980
Confidence: High

And also the special body attribute.

__override special attribute
Status: Implemented in TODO
Confidence: High

No more magic attributes please. __functor is already bad enough.

Fix tokenization rules
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#token-boundaries-
aren%E2%80%99t-real-and-will-hurt-you-cf-nix-iceberg

Status: Partially implemented in https://gerrit.lix.systems/c/lix/+/1984

Autocaller must die
Status: Not implemented

wtf?

Future language changes
Some changes to the syntax would make large chunks of existing code invalid. These need to be
postponed until proper versioning and migration tooling have been figured out.

Comma separated lists (confidence: high)
Currently list items are space separated. This has two major drawbacks:

1. This is inconsistent with most other language syntax features, which use , or ; as item
separator.

2. Not having them requires using parentheses around function calls in lists. Those are
currently easy to forget, causing confusing type issues for beginners. (This would be less
of an issue if we had a type system that could catch the mistake early on …)

Function declaration (confidence: low)
args@ now always also contains the default values (are there use cases where one strictly
needs this not to be the case? Regardless, that behavior could be manually emulated if
necessary)
The ? for defaults becomes ?:
Functions can also destructure list arguments: [name, value]: _ as a replacement for
nameValuePair and and to make tuples a first-class citizen (together with list indexing).

Note however that this change conflicts with comma separated lists because having
both would cause too much lookahead in the parser.

NUL bytes must be supported within strings
Status: Blocked on rewriting the garbage collector to be compatible

0-terminated strings were a mistake, and we should not make any concessions in the language to
implementations who use them. Especially when they're buggy.

Paths

Comments
While we are touching the syntax, let's leave some space here to discuss code comments.

I like having the distinction between commented out code (syntax highlighting:
unobtrusive) and commenting code (syntax highlighting: vivid).

❯ nix-build --expr '[[[({a}: [a])]]]' --arg a 'with import <nixpkgs> {}; hello' --no-link
fetching path input 'path:/nix/store/nyysli8lhjf03jgyvrf7mlxrlgnqn9qp-source'
/nix/store/kwmqk7ygvhypxadsdaai27gl6qfxv7za-hello-2.12.1

https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#nul-handling-makes-no-sense

We should leave some room for semantic doc comments, should they ever come in Nix
(TODO link respective discussions)
There is this concept of "semantic comment" that comments out entire AST nodes. This is
immensely useful even though few languages have it. (Caveat: the commented out code
must at least be syntactically correct.)

TODO

Design documents

Flake stabilisation proposal
Preface
FIXME: this page hasn't been reviewed by Lix Core team members, so it's effectively a
draft/suggestion/pre-RFC/dream, whatever. It's not an official design document, but thought has
been put into making it good, anyway.

Problem Statement
Flakes are a mess. They are extremely popular (so it's very painful to discard them), but they are
also deeply flawed in so many ways, and their compat story is non-existent. Let's go through a few
things that are traditionally associated with flakes, but they don't need to be.

2.4 CLI is obvious. There's no reason why it ever had to be tied so much to flakes. It
should be stabilized independently (and probably before flakes)
Pure eval. Again, never should've been flake-gated
Installables/runnables abstraction
Git awareness
Output schemas (vanilla Nix only has default.nix and shell.nix , but flakes define more
things that are CLI-integrated like formatters, checks, nixosConfigurations etc.)
builtins.fetchTree deprecation/refactoring/stabilization (TODO: research this more)
Channels deprecation
NIX_PATH deprecation

On the last 2 points, see this: https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-
channels.html

Overall, flakes did too much at once. We can sort those out one by one. Deprecating NIX_PATH and
channels would be a bit tricky, but we can try to re-use flake registries for the same functionality.

Also, flakes have a very bad backwards-compatibility story. Worse than that, we are a CppNix fork,
so we want to provide a migration path for a reasonable amount of time. CppNix also completely
doesn't have forward compatibility. This means that doing any changes to the flake.nix or to
flake.lock will break flakes for CppNix users. This is really bad, it essentially means we're removing
flakes outright, so this isn't something that we want to do.

With those preparations out of the way, we can now get to the flakes.

https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2023/09/06/flakes-is-an-experiment-that-did-too-much-at-once.html

Flake Components
Flakes themselves have many moving parts.

flake.nix schema: description , nixConfig , inputs and outputs
inputs are super static. Changing anything about them will break a lot of stuff
outputs is extensible. Changing the predefined attributes isn't great and can break
things
description and nixConfig are arbitrary, and can contain bogus info (FIXME: is this
true?) We can use this to introduce new functionality without changing other fields,
but this is a crime, so let's try to avoid that

inputs URL parser
flake.lock format

The most cursed part is how tightly connected all of that is. flake.lock records the inputs to
builtins.fetchTree . These inputs are parsed from flake.nix . The real abstraction here is inputs URL
parser. Everything else is implementation details that leak out into public interfaces.

So the situation is tricky. Code changes leak out, there are no useful versioning mechanisms, we
need to make changes in such a way as to not break upstream, and the adoption is large enough
that we don't want to break things. But thankfully, there is a way to deal with it, largely inspired
but Opentofu's approach.

The Plan
Stage 0: Fork the Interfaces
First, we must fork the interfaces. Instead of having ossified flake.nix and flake.lock interfaces that
we have no control over - we fork them into different files. Naming is TBD, but let's use flake.lix and
flake.lick in this discussion. More specifically, the procedure looks like this:

We change all of the flake-related code to use flake.lix and flake.lick files instead
We add new internal structures for flake.lix and flake.lick . For starters, we can have the
same structure, but fix the versioning story: flake.lick should have SemVer versioning
instead of monotonic uint (that would make experimenting and/or forking the format so
much easier, because SemVer allows "metadata" info added to the actual version), and
flake.lix should have the version top-level element, too. flake.lix is computible, and so it's
very non-trivial and depends on many factors: we must version it. Also SemVer. The
versions have to be managed separately
We add the migration code. It would look at flake.nix and flake.lock and create
corresponding flake.lix and flake.lick

This completely changes the compatibility story, because we no longer have to think about
upstream usage: we only read, never modify the files the upstream uses. Together with adding
sane versioning, we can isolate the versioning to just our project, and make changes (including

backwards-incompatible ones) in a sane manner.

Stage 1: Eating Spaghetti
Next, we need to decouple implementation, flake.lix and flake.lick from each other. For the latter
two, we already have separate version on "manifest" file and the lockfile; it's a good start. Let's
discuss what needs to be done to unveil this spaghetti:

Implementation and flake.lix
TODO: does it make sense to use builtins.fetchTree for inputs, or do we need a
separate interface?
Parametrized URLs are similar to Terraform, but they have an extreme amount of
edge cases to cover. The actual parameters should be separate arguments; no need
to try to embed them into a URL
follows mechanism is horrible. It is extremely rare that you want to respect
downstream lockfile in practice. Let's just not do that
inputs is a special case among special cases; it can't contain any logic, and it also
uses C++ code for trust on first use. There's no reason to be so locked into C++: it
may be reasonable to expose the toggle to do trust on first use to the user, and have
inputs be regular NixLang, and possibly even its interpretation be in NixLang (TBD
about that)

Implementation and flake.lick
The implementation completely bleeds through to the lockfile: it saves all of the
arguments for builtins.fetchTree and uses that for reproducibility
To verify that the contents are actually the same, we need a checksum; narHash is
the checksum. TBD if we want checksum to have more complex structure
(algo/version/w.e. as well as value) or if lockfile versioning is enough
Instead of saving all of the arguments for the particular fetcher, we need to have an
abstract version that we can compute from fetcher contents (TBD if in NixLang or in
C++)

flake.lix and flake.lick
As pointed out above, parametrisation of URLs is a blatant abstraction violation; the
interface for parameters in flake.lix and flake.lick should match
flake.lix should contain "version range", and flake.lick should contain the "resolved
version". The entire specifics are tricky for e.g. git

Stage 2: Improving the Interfaces
There's a lot that can be done here. Cross-compilation, version resolution, newer fields, and more -
all of that belongs to this stage.

Stage 3: Maintenance
This path is backwards-compatible throughout, so we can maintain an upgrade path without much
issue. We can have a directory with subdirectories for each major version. Those subdirectories will
also handle upgrading the lockfile; then, we'll always have a path to upgrade from CppNix flakes to

https://developer.hashicorp.com/terraform/language/modules/sources
https://en.wikipedia.org/wiki/Trust_on_first_use

Lix flakes: you just execute all of the existing upgrades in order.

Truly backwards-incompatible changes would be adding absolutely necessary metadata, without
which the previous version is useless. npm has this: their oldest lockfile (you can call it "v0") didn't
have a version field, and it also didn't record checksums. It simply doesn't contain any metadata
that better lockfiles do, so the only way to move forward is to extract whatever you can from it,
and generate a newer-version lockfile from scratch with that data.

As long as we only need the version and checksum (which seems to be the case), the only source of
breaking changes I see is security vulnerabilities. If e.g. NAR hashing is proven to be vulnerable -
it's probably for the best to not rely on the already existing hashes at all.

Notes
This plan doesn't have to be executed as sequentially as it's described. Really, we can have
something like a from-scratch rewrite for flakes and include it in the first flake.lix + flake.lick
versions. Or we could only add the versioning code. Or we could add versioning and version
resolution, or versioning and cross-compilation, or literally anything else, as long as versioning is
definitely present.

Appendix A: Flakes are a broken abstraction
Some parts of this were already mentioned, but flakes are pretty broken on fundamental levels.
The lockfile essentially containing arguments for a C++ function are an example of that. This isn't
an abstraction pretty much by definition - it does not abstract away the details. A good example of
a lockfile is version = 3 for Cargo:

[[package]]
name = "anstyle-wincon"
version = "3.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19"
dependencies = [
 "anstyle",
 "windows-sys 0.52.0",
]

[[package]]
name = "anstyle"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b"

We more or less have the source (as bad as it is implemented in flakes), and we have checksum
(which is NAR hash) and name - but we are missing the version abstraction. There's some
complexity to unpack here (for example, it isn't trivial to say what "version" means for a tarball or a
filesystem path), but flakes don't even try - they just completely ignore the need for this
abstraction, and use C++ implementation details instead.

Another issue is the general confusion about what flakes are supposed to be, and how Nix plays
into that. Nix is a lot of things, but the way it ended up working out is that Nix is a builder
abstraction: you use Nix to build packages, and the packages may have dependencies, and yadda
yadda. But because Nix is so general, it can be used to build a "meta-package" of all "installed
packages", and you can also use it to build OS configs, so you can essentially build a system meta-
package. The whole NixOS system is just a big meta-package that consists of other packages.

This is a blessing and a curse: expressing the entire system as one package is cool and has its
advantages, but this is also a very hacky way to use the build system that is Nix. It's like using the
Makefile to configure your system. CppNix developed a lot of stuff to keep this approach going:
channels, NIX_PATH, nixos-rebuild scripts, nix-env and other things are all used to make the
experience more tolerable. So it's a lot of hacks on top of a rather quirky way to use the build
system. The biggest example on how it manifests is NixOS configuration: we use it to create
different build manifests for the resulting system, and we don't have other ways to interact with
the system, like a package manager. This is a tough place to be in: the NixOS approach has a lot of
really good properties, but it's also inherently limited because the build system is used as a
configuration engine and a package manager.

Flakes are confused and stupid because they try to be a package manager for Nix, but they are a
shitty package manager, and they also don't even try to resolve many of the hard questions that
arise from using Nix itself as a package manager. They don't have a concept of "libraries", so
everyone still uses Nixpkgs lib. They don't have version resolution, or a concept of versions. They
don't really integrate with Nix profiles, they don't integrate with NixOS, they don't draw good
boundaries between what different units of NixLang code do: provide library functions, create
packages, create configuration, or whatever else.

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.5",
]

...

There are only three package manager things that flakes actually tried to do: it's
installables/runnables abstraction (just barely counts), manifest+lockfile usage (the idea itself is
good but impl is awful), and defining a schema. Everything else doesn't address the issue at hand
in the slightest: some of the ideas are good and should be decoupled from flakes, and some of the
ideas are awful.

Regarding installables/runnables: it's a step in the right direction for drawing boundaries between
packages, libraries and configs. But the way it's implemented is also bad. The definition for
installables is a huge nothing-burger: basically, an "installable" is a store path or a thing that
resolves into a store path (this is more or less what's said in the glossary). This definition gives you
exactly nothing, and reminds of a horribly ill-defined "derivation" stuff ([1], [2], [3], [4], [5], [6]).
The actually useful thing here is "runnables", which are things you can nix run . It's also barely
defined (mostly just using the store path and appending /bin/<name> to it lol) and absolutely
isolated from all of the Nixpkgs and NixOS work, so it ends up being completely useless in practice.

This document mainly goes over how to unbreak the flakes and make them work at all, but
creating coherent abstractions on top of the unbroken flakes is a whole other dimension of pain
and integration work. In practice, integrating flakes into Nix properly will end up requiring "owning
the stack" or close to it: being very free to refactor and unbreak many hacks in Nixpkgs and NixOS.

Appendix B: Some thoughts on post-stabilisation world
Something that would make a lot of sense is drawing further boundaries between units of NixLang
code. Flakes would be a NixLang package manager, and like there is a distinction between
"binaries" and "libraries" in proper programming languages like Rust, there would be "flake types"
for NixLang. Some easy examples include: "NixLang library", "Nix plugin", "configuration",
"package manifest", "binary/runnable", "generic package". Just using those "flake types" for
manifests doesn't do much good: there needs to be tight integration with Nixpkgs. In fact, Nixpkgs
might start composing flakes instead of just NixLang code directories: this might be a great change
for the better.

To give some examples on how integrating flakes would look like, we can take inspiration from
dreams page. Let's discuss flake-related items:

Using flakes as code libraries
This is just one possible usage! We want to draw boundaries between NixLang units.
"Flake as NixLang library" is perfect: if flakes are units for package management,
distributing NixLang libraries as flakes makes perfect sense

This would go really hard with bytecode compilation/WASM/etc., because now
we'd be able to distribute high-performance library functions written in
languages that aren't NixLang

Creating subcommands - it's a little orthogonal to the flakes discussion, but some custom
subcommands could be comething like "Nix plugins" and distributed as flakes

https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix#installables
https://nix.dev/manual/nix/2.18/glossary#gloss-installable
https://nix.dev/manual/nix/2.18/glossary#gloss-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-store-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-instantiate
https://nix.dev/manual/nix/2.18/glossary#gloss-realise
https://nix.dev/manual/nix/2.18/glossary#gloss-store-path
https://nix.dev/manual/nix/2.18/glossary#gloss-store-object
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://wiki.lix.systems/books/lix-contributors/page/dreams

nix profile working on a mutable manifest is a perfect integration example: the "installed
packages" manifest would be a unit of NixLang code, and so it makes sense as a "flake
type". The coolest thing here would be to use flake resolution to have transparent
interaction with remote flakes
fs builtins are very relevant for the discussion, too: Nixpkgs and NixOS are full of
filesystem manipulation evil, and much of it should use a dedicated "flake type"

So basically, flakes subsystem needs to be an actual package manager with actual units (flakes).
Then, flakes will actually make sense and be good, and we'll finally be able to have nice things, like
not having Nixpkgs be a gigantic fs tree with dubious abstractions. I mean, pointing to Rust again
(because it's good): Cargo doesn't just operate on fs trees and let you handle the rest like an old-
school thing like Nix forces you to do, Cargo has many abstractions to decouple fs tree from things
you care about: workspaces, crates, modules, etc. When flakes become Cargo and give us proper
composition - we'll know we've done a good job.

Design documents

Observability and Protocol Design
jade: I think that we should start protocol design by thinking about who needs what information,
which is most cleanly hit by looking at how observability architecture looks. Let's get cracking on
what observability we need/want in Lix.

Context
Old profiling pad for the Nix language: https://pad.lix.systems/lix-profiling. This might want/need to
be a different system than the overall observability architecture since it affects the evaluator
primarily and has specialized needs (e.g. high performance).

Old protocol investigation pad: https://pad.lix.systems/lix-protocol-investigation

Discussion
Let's have this discussion in a pad here so we can have good live editing:
https://pad.lix.systems/lix-observability

https://pad.lix.systems/lix-profiling
https://pad.lix.systems/lix-protocol-investigation
https://pad.lix.systems/lix-observability

Release names
Release names are the names of frozen desserts. There's a list on Wikipedia of frozen desserts, but
of course, others can be added. The purpose of release names is that they are cute, and they are
not necessarily picked for any reason.

Used release names:

2.90 "Vanilla Ice Cream"
2.91 "Dragon's Breath"
2.92 "Bombe glacée"

Here are some ideas of release names:

Kulfi
Tartufo
Soft serve (with some flavour?)

Cherry Dip Soft Serve Vanilla
Italian ice
Gelato
Granita
Frozen yogurt
Frozen custard
Açaí na tigela
Bici bici
Sorbet
Frozen chocolate banana
Watermelon slush
Freeze pop
Baked Alaska

https://en.wikipedia.org/wiki/Category:Frozen_desserts

