
Code

Code changes
Tests
If at all practicable, all new code should be tested to some extent. If writing a test is hard, we need
to prioritize making it easier, and potentially block features if that is the case.

Documentation
Reference documentation should be added, in addition to release notes (doc/manual/rl-next-dev), for
user visible changes.

For notable dev facing changes, consider adding release notes in doc/manual/rl-next-dev . This is not
critical for all changes; in some cases it may make more sense to write it up in dev documentation
instead, and indeed it may be ok to defer writing that dev documentation (it's helpful to create an
issue to not forget).

Benchmarking
Changes that touch the core of the evaluator or other performance critical code in Lix should be
benchmarked.

See bench/README.md for instructions.

Changelist size
If a CL is too long to review, it should be split up into smaller pieces with tests. The exact length
varies but passing the 1000 line mark should give significant thought to splitting.

When a CL is split, each commit should still be a valid state (tests passing, etc). If you
must, you can gate in-progress changes with a flag or similar until the final commit.
(Qyriad)

Commit messages

https://git.lix.systems/lix-project/lix/src/branch/main/bench

Include at least a sentence or two as to why you are making a commit. For example, it can be nice
to have the reproduction of a bug in the commit message. The commit message is the message for
your review.

There's no particular format or specific style for commit messages; just make sure they're
descriptive and informative.

C++
While we hope to migrate the lix interpreter from C++ to Rust eventually, C++ is a language that
is likely to exist for a long time, and we may end up having to use it in other contexts.

Lix is a C++20 codebase. Features of C++20 that compile on all supported platforms can be used.

NULL vs nullptr
nullptr where at all possible.

Static vs anonymous namespace
Prefer anonymous namespace, both currently exist in the codebase (jade: any other opinions?).

Type Aliases with typedef vs using
Prefer using declarations, as they can be used in more places, can be templatized, and have
clearer syntax. Both currently exist in the codebase. (Qyriad)

TODO/FIXME/XXX Comments
jade: this is not consistent with the conventions I use, needs further discussion imo (TODO: block in
pre-commit hook, used in local tree but should never pass code review, FIXME(name||feature): its
busted, someone should go fix it later, XXX: this is bad, we are writing down that it is ugly but
leaving it as-is as we didn't figure out a better way)

Something along the lines of:

TODO: acknowledgement that something is acceptably-for-now incomplete, especially if
the scope of fixing it is high or unknown
FIXME: this should be fixed before the feature or major change that it's a part of is
considered "ready"
XXX: this should not pass code review and should be considered a left-in mistake

Header files
Filenames
Headers should end with .hh . This reduces the likelihood anyone will try to include them from C
files, which would require following the rules of both languages and is easy to get wrong.

The implementation of the functions declared in a .hh file should be in a .cc file of the same name,
absent reasons to do otherwise.

Order-independence
Headers should not care what order they're loaded in.

The exception, for now, is config.h in the lix repo. This must always come before all other headers.
This observation should not be taken to imply it must always be that way, but at the moment it's
helpful to be aware of.

Idempotence
Use #pragma once , it helps. You can see this in most existing header files.

///@file and header documentation
///@file should be at the top of all nix headers - Doxygen and other tools use it to decide whether a
header should have documentation generated for definitions in it. See the relevant Doxygen
documentation for more details.

Strongly consider adding a description of the purpose of a header file at the top of it in with @brief
A sentence saying what it is for .

Examples:

Source files

/**
 * @file
 * @brief This header is for meow meow cat noises.
 */

/// @file
/// @brief meow meow meow

https://www.doxygen.nl/manual/docblocks.html#structuralcommands
https://www.doxygen.nl/manual/docblocks.html#structuralcommands

Filenames
Source files should end with .cc .

Nix language
Unsurprisingly Nix contains Nix code. Some amount is tests and a lot is packaging.

We use the nixfmt formatter on files outside the test suite. It's run through treefmt with pre-commit
hooks. Nix code outside the test suite is expected to be formatted.

Test suite files need not be formatted with the formatter at this time, but please consider doing so
with new tests that don't rely on formatting.

with
Prefer not to use with to bring things into scope as it obscures the source of variables and
degrades language server diagnostics.

Use let inherit (attrset) attrs instead.

Meson
Generally based on the style in Meson's docs made consistent and with a couple tweaks; notably
multiline function calls are done in "block style" (think like rustfmt does it), rather than aligned,
e.g.:

rather than:

Meson's docs go back and forth on this, but we also put a space before and after the colon for
keyword arguments (so win_subsystem : 'windows' , rather than win_subsystem: 'windows').

executable('sdlprog', 'sdlprog.c',
 win_subsystem : 'windows',
 dependencies : sdl2_dep,
)

executable('sdlprog', 'sdlprog.c',
 win_subsystem : 'windows',
 dependencies : sdl2_dep)

Revision #11
Created 25 March 2024 03:54:36 by jade

Updated 23 July 2024 18:51:54 by jade

