
Flake stabilisation proposal

Preface
FIXME: this page hasn't been reviewed by Lix Core team members, so it's effectively a
draft/suggestion/pre-RFC/dream, whatever. It's not an official design document, but thought has
been put into making it good, anyway.

Problem Statement
Flakes are a mess. They are extremely popular (so it's very painful to discard them), but they are
also deeply flawed in so many ways, and their compat story is non-existent. Let's go through a few
things that are traditionally associated with flakes, but they don't need to be.

2.4 CLI is obvious. There's no reason why it ever had to be tied so much to flakes. It
should be stabilized independently (and probably before flakes)
Pure eval. Again, never should've been flake-gated
Installables/runnables abstraction
Git awareness
Output schemas (vanilla Nix only has default.nix and shell.nix , but flakes define more
things that are CLI-integrated like formatters, checks, nixosConfigurations etc.)
builtins.fetchTree deprecation/refactoring/stabilization (TODO: research this more)
Channels deprecation
NIX_PATH deprecation

On the last 2 points, see this: https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-
channels.html

Overall, flakes did too much at once. We can sort those out one by one. Deprecating NIX_PATH and
channels would be a bit tricky, but we can try to re-use flake registries for the same functionality.

Also, flakes have a very bad backwards-compatibility story. Worse than that, we are a CppNix fork,
so we want to provide a migration path for a reasonable amount of time. CppNix also completely
doesn't have forward compatibility. This means that doing any changes to the flake.nix or to
flake.lock will break flakes for CppNix users. This is really bad, it essentially means we're removing
flakes outright, so this isn't something that we want to do.

With those preparations out of the way, we can now get to the flakes.

Flake Components

https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2024/05/07/its-not-flakes-vs-channels.html
https://samuel.dionne-riel.com/blog/2023/09/06/flakes-is-an-experiment-that-did-too-much-at-once.html

Flakes themselves have many moving parts.

flake.nix schema: description , nixConfig , inputs and outputs
inputs are super static. Changing anything about them will break a lot of stuff
outputs is extensible. Changing the predefined attributes isn't great and can break
things
description and nixConfig are arbitrary, and can contain bogus info (FIXME: is this
true?) We can use this to introduce new functionality without changing other fields,
but this is a crime, so let's try to avoid that

inputs URL parser
flake.lock format

The most cursed part is how tightly connected all of that is. flake.lock records the inputs to
builtins.fetchTree . These inputs are parsed from flake.nix . The real abstraction here is inputs URL
parser. Everything else is implementation details that leak out into public interfaces.

So the situation is tricky. Code changes leak out, there are no useful versioning mechanisms, we
need to make changes in such a way as to not break upstream, and the adoption is large enough
that we don't want to break things. But thankfully, there is a way to deal with it, largely inspired
but Opentofu's approach.

The Plan
Stage 0: Fork the Interfaces
First, we must fork the interfaces. Instead of having ossified flake.nix and flake.lock interfaces that
we have no control over - we fork them into different files. Naming is TBD, but let's use flake.lix and
flake.lick in this discussion. More specifically, the procedure looks like this:

We change all of the flake-related code to use flake.lix and flake.lick files instead
We add new internal structures for flake.lix and flake.lick . For starters, we can have the
same structure, but fix the versioning story: flake.lick should have SemVer versioning
instead of monotonic uint (that would make experimenting and/or forking the format so
much easier, because SemVer allows "metadata" info added to the actual version), and
flake.lix should have the version top-level element, too. flake.lix is computible, and so it's
very non-trivial and depends on many factors: we must version it. Also SemVer. The
versions have to be managed separately
We add the migration code. It would look at flake.nix and flake.lock and create
corresponding flake.lix and flake.lick

This completely changes the compatibility story, because we no longer have to think about
upstream usage: we only read, never modify the files the upstream uses. Together with adding
sane versioning, we can isolate the versioning to just our project, and make changes (including
backwards-incompatible ones) in a sane manner.

Stage 1: Eating Spaghetti
Next, we need to decouple implementation, flake.lix and flake.lick from each other. For the latter
two, we already have separate version on "manifest" file and the lockfile; it's a good start. Let's
discuss what needs to be done to unveil this spaghetti:

Implementation and flake.lix
TODO: does it make sense to use builtins.fetchTree for inputs, or do we need a
separate interface?
Parametrized URLs are similar to Terraform, but they have an extreme amount of
edge cases to cover. The actual parameters should be separate arguments; no need
to try to embed them into a URL
follows mechanism is horrible. It is extremely rare that you want to respect
downstream lockfile in practice. Let's just not do that
inputs is a special case among special cases; it can't contain any logic, and it also
uses C++ code for trust on first use. There's no reason to be so locked into C++: it
may be reasonable to expose the toggle to do trust on first use to the user, and have
inputs be regular NixLang, and possibly even its interpretation be in NixLang (TBD
about that)

Implementation and flake.lick
The implementation completely bleeds through to the lockfile: it saves all of the
arguments for builtins.fetchTree and uses that for reproducibility
To verify that the contents are actually the same, we need a checksum; narHash is
the checksum. TBD if we want checksum to have more complex structure
(algo/version/w.e. as well as value) or if lockfile versioning is enough
Instead of saving all of the arguments for the particular fetcher, we need to have an
abstract version that we can compute from fetcher contents (TBD if in NixLang or in
C++)

flake.lix and flake.lick
As pointed out above, parametrisation of URLs is a blatant abstraction violation; the
interface for parameters in flake.lix and flake.lick should match
flake.lix should contain "version range", and flake.lick should contain the "resolved
version". The entire specifics are tricky for e.g. git

Stage 2: Improving the Interfaces
There's a lot that can be done here. Cross-compilation, version resolution, newer fields, and more -
all of that belongs to this stage.

Stage 3: Maintenance
This path is backwards-compatible throughout, so we can maintain an upgrade path without much
issue. We can have a directory with subdirectories for each major version. Those subdirectories will
also handle upgrading the lockfile; then, we'll always have a path to upgrade from CppNix flakes to
Lix flakes: you just execute all of the existing upgrades in order.

https://developer.hashicorp.com/terraform/language/modules/sources
https://en.wikipedia.org/wiki/Trust_on_first_use

Truly backwards-incompatible changes would be adding absolutely necessary metadata, without
which the previous version is useless. npm has this: their oldest lockfile (you can call it "v0") didn't
have a version field, and it also didn't record checksums. It simply doesn't contain any metadata
that better lockfiles do, so the only way to move forward is to extract whatever you can from it,
and generate a newer-version lockfile from scratch with that data.

As long as we only need the version and checksum (which seems to be the case), the only source of
breaking changes I see is security vulnerabilities. If e.g. NAR hashing is proven to be vulnerable -
it's probably for the best to not rely on the already existing hashes at all.

Notes
This plan doesn't have to be executed as sequentially as it's described. Really, we can have
something like a from-scratch rewrite for flakes and include it in the first flake.lix + flake.lick
versions. Or we could only add the versioning code. Or we could add versioning and version
resolution, or versioning and cross-compilation, or literally anything else, as long as versioning is
definitely present.

Appendix A: Flakes are a broken abstraction
Some parts of this were already mentioned, but flakes are pretty broken on fundamental levels.
The lockfile essentially containing arguments for a C++ function are an example of that. This isn't
an abstraction pretty much by definition - it does not abstract away the details. A good example of
a lockfile is version = 3 for Cargo:

[[package]]
name = "anstyle-wincon"
version = "3.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19"
dependencies = [
 "anstyle",
 "windows-sys 0.52.0",
]

[[package]]
name = "anstyle"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b"

We more or less have the source (as bad as it is implemented in flakes), and we have checksum
(which is NAR hash) and name - but we are missing the version abstraction. There's some
complexity to unpack here (for example, it isn't trivial to say what "version" means for a tarball or a
filesystem path), but flakes don't even try - they just completely ignore the need for this
abstraction, and use C++ implementation details instead.

Another issue is the general confusion about what flakes are supposed to be, and how Nix plays
into that. Nix is a lot of things, but the way it ended up working out is that Nix is a builder
abstraction: you use Nix to build packages, and the packages may have dependencies, and yadda
yadda. But because Nix is so general, it can be used to build a "meta-package" of all "installed
packages", and you can also use it to build OS configs, so you can essentially build a system meta-
package. The whole NixOS system is just a big meta-package that consists of other packages.

This is a blessing and a curse: expressing the entire system as one package is cool and has its
advantages, but this is also a very hacky way to use the build system that is Nix. It's like using the
Makefile to configure your system. CppNix developed a lot of stuff to keep this approach going:
channels, NIX_PATH, nixos-rebuild scripts, nix-env and other things are all used to make the
experience more tolerable. So it's a lot of hacks on top of a rather quirky way to use the build
system. The biggest example on how it manifests is NixOS configuration: we use it to create
different build manifests for the resulting system, and we don't have other ways to interact with
the system, like a package manager. This is a tough place to be in: the NixOS approach has a lot of
really good properties, but it's also inherently limited because the build system is used as a
configuration engine and a package manager.

Flakes are confused and stupid because they try to be a package manager for Nix, but they are a
shitty package manager, and they also don't even try to resolve many of the hard questions that
arise from using Nix itself as a package manager. They don't have a concept of "libraries", so
everyone still uses Nixpkgs lib. They don't have version resolution, or a concept of versions. They
don't really integrate with Nix profiles, they don't integrate with NixOS, they don't draw good
boundaries between what different units of NixLang code do: provide library functions, create
packages, create configuration, or whatever else.

There are only three package manager things that flakes actually tried to do: it's
installables/runnables abstraction (just barely counts), manifest+lockfile usage (the idea itself is

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets 0.52.5",
]

...

good but impl is awful), and defining a schema. Everything else doesn't address the issue at hand
in the slightest: some of the ideas are good and should be decoupled from flakes, and some of the
ideas are awful.

Regarding installables/runnables: it's a step in the right direction for drawing boundaries between
packages, libraries and configs. But the way it's implemented is also bad. The definition for
installables is a huge nothing-burger: basically, an "installable" is a store path or a thing that
resolves into a store path (this is more or less what's said in the glossary). This definition gives you
exactly nothing, and reminds of a horribly ill-defined "derivation" stuff ([1], [2], [3], [4], [5], [6]).
The actually useful thing here is "runnables", which are things you can nix run . It's also barely
defined (mostly just using the store path and appending /bin/<name> to it lol) and absolutely
isolated from all of the Nixpkgs and NixOS work, so it ends up being completely useless in practice.

This document mainly goes over how to unbreak the flakes and make them work at all, but
creating coherent abstractions on top of the unbroken flakes is a whole other dimension of pain
and integration work. In practice, integrating flakes into Nix properly will end up requiring "owning
the stack" or close to it: being very free to refactor and unbreak many hacks in Nixpkgs and NixOS.

Appendix B: Some thoughts on post-stabilisation world
Something that would make a lot of sense is drawing further boundaries between units of NixLang
code. Flakes would be a NixLang package manager, and like there is a distinction between
"binaries" and "libraries" in proper programming languages like Rust, there would be "flake types"
for NixLang. Some easy examples include: "NixLang library", "Nix plugin", "configuration",
"package manifest", "binary/runnable", "generic package". Just using those "flake types" for
manifests doesn't do much good: there needs to be tight integration with Nixpkgs. In fact, Nixpkgs
might start composing flakes instead of just NixLang code directories: this might be a great change
for the better.

To give some examples on how integrating flakes would look like, we can take inspiration from
dreams page. Let's discuss flake-related items:

Using flakes as code libraries
This is just one possible usage! We want to draw boundaries between NixLang units.
"Flake as NixLang library" is perfect: if flakes are units for package management,
distributing NixLang libraries as flakes makes perfect sense

This would go really hard with bytecode compilation/WASM/etc., because now
we'd be able to distribute high-performance library functions written in
languages that aren't NixLang

Creating subcommands - it's a little orthogonal to the flakes discussion, but some custom
subcommands could be comething like "Nix plugins" and distributed as flakes
nix profile working on a mutable manifest is a perfect integration example: the "installed
packages" manifest would be a unit of NixLang code, and so it makes sense as a "flake
type". The coolest thing here would be to use flake resolution to have transparent

https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix#installables
https://nix.dev/manual/nix/2.18/glossary#gloss-installable
https://nix.dev/manual/nix/2.18/glossary#gloss-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-store-derivation
https://nix.dev/manual/nix/2.18/glossary#gloss-instantiate
https://nix.dev/manual/nix/2.18/glossary#gloss-realise
https://nix.dev/manual/nix/2.18/glossary#gloss-store-path
https://nix.dev/manual/nix/2.18/glossary#gloss-store-object
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://nix.dev/manual/nix/2.18/command-ref/new-cli/nix3-run#description
https://wiki.lix.systems/books/lix-contributors/page/dreams

interaction with remote flakes
fs builtins are very relevant for the discussion, too: Nixpkgs and NixOS are full of
filesystem manipulation evil, and much of it should use a dedicated "flake type"

So basically, flakes subsystem needs to be an actual package manager with actual units (flakes).
Then, flakes will actually make sense and be good, and we'll finally be able to have nice things, like
not having Nixpkgs be a gigantic fs tree with dubious abstractions. I mean, pointing to Rust again
(because it's good): Cargo doesn't just operate on fs trees and let you handle the rest like an old-
school thing like Nix forces you to do, Cargo has many abstractions to decouple fs tree from things
you care about: workspaces, crates, modules, etc. When flakes become Cargo and give us proper
composition - we'll know we've done a good job.

Revision #2
Created 28 October 2024 11:48:55 by kfearsoff
Updated 7 November 2024 00:42:26 by kfearsoff

