Gerrit

What is Gerrit and why do people like it?

Gerrit is a code review system from Google in a similar style to Google's internal Critique tool, but
based on Git, and publicly available as open source. It hosts a Git repo with the ability to submit

changes for review and offers mirroring to other repos (like https://qgit.lix.systems/lix-project/lix). It

has an entirely different review model to GitHub (and Forgejo, GitLab, etc that copy GitHub's
review model), where, instead of pull requests, you have changelists (CLs): reviews on individual
commits, with each revision of a commit being a different "patchset", rather than reviewing an
entire branch at a time. CLs may be merged one by one or in a batch.

Although this has some learning curve, we expect that you will find it pleasant to work with after
figuring it out. It has some rough edges and strong opinions that take some getting used to, but it
has served us well and saved us an inordinate amount of time both as reviewers and change
authors. The rest of this document gives some pointers on the workflows we use with Gerrit.

People like Gerrit because it makes the following things trivial or easy, all of which are somewhere
between annoying and impossible on GitHub modeled systems:

Gerrit produces better code:

e Gerrit enforces good commit messages, since there is no second "pr message" so peoples'
commit messages get actually looked at with some care
e Gerrit enforces good commit hygiene, since adding another commit is really just splitting
a commit with git revise -c or other tools; since there are no PR dependencies or branches
to worry about, splitting commits is no longer a big ask.
o Relatedly, this directly makes reviews smaller since the overhead of doing another
change is low.

Gerrit makes reviewers' lives easier and reduces review round trips:

e As a reviewer, you can look at what changed since you last reviewed, even in the
presence of rebases, by looking at the patchset history of a CL. This avoids pointless
rereview; you can actually diff versions of changes properly.

e The change author generally merges the change after approval, without them needing
commit access. This means that they can do a final once-over of the change and make
sure that they are ok with its state before merging it. This reduces miscommunication
causing merging of unfinished code.

e As a reviewer, you can edit someone's change and/or commit message to fix a typo (in
the web interface) and then stamp it, while giving them the final say on merging the
edited change.

https://abseil.io/resources/swe-book/html/ch19.html
https://git.lix.systems/lix-project/lix

e You can give feedback like the following: "I would merge this as-is but you can consider
this feedback if you would like" and then let the change author decide to merge it.
o Since the permission-requiring step in Gerrit is approving the change, not merging it,

every change author can have final say in when the change gets merged.

e Review suggestions get applied as a batch without cluttering commit history in a
confusing manner.

e You can download someone's change to look at it locally in one command that you can
copy paste from the Gerrit interface.

Gerrit makes your life easier as a contributor:

e Submitting a new change is just a matter of committing it and pushing it. You don't need
to think about branches or the web interface or extra commands. Want to do more
changes building on it? Just commit them and push them.

e Branches are not required and you can easily build off of other peoples' changes by
fetching them and rebasing against them; change dependencies are simply commit
parents. They can then be merged in whichever manner they will be merged.

e If you are doing a larger change, it is natural to merge it piece by piece, adding little
improvements as you go, and putting the highest risk parts of it at the tip, making the
obviously good parts of the change land and keeping your diffs and rebases against main
smaller.

e Gerrit makes it clear which comments still need action in a clean way, compared to
GitHub where resolved comments get regularly broken or disappear altogether.

e Gerrit guesses (with reasonable accuracy) who a change is blocked on and shows it on the
dashboard with a little arrow next to their name, allowing you to see at a glance which
changes are your responsibility at a given time.

e There is a rebase button that just works. Trivial non-conflicting rebases do not require a
rereview.

That being said, there are some downsides:

e Gerrit is very mean to you if you don't have your commit history in a clean presentable
state, which takes some getting used to and Git does not make editing history easy, so it
does involve a little more fighting of Git. However, this also means that the reviews can be
of cleaner and smaller pieces of code with fewer unrelated changes.

o This makes pushing work in progress code with questionable commit history harder;
see below for solutions to this.

e Gerrit requires a little bit of local setup in the form of adding your SSH key or setting up
the HTTP password. It also requires a Git commit-msg hook, but nix develop automatically
does that for you.

Learning materials

o https://gerrit-review.googlesource.com/Documentation/intro-user.html

https://gerrit-review.googlesource.com/Documentation/intro-user.html

e https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqlC6SPujZJhgamygqO1XOH;j

H-uk/view

Our installation

Gerrit is at https://gerrit.lix.systems

The Gerrit SSH server is running on port 2022. The repo URLs are:

e ssh://{username}@gerrit.lix.systems:2022/lix
e https://gerrit.lix.systems/lix if using HTTP auth; see Gerrit settings for setting an HTTP
password if desired

Hit the @ key on any change to download it, which will give you the right URLs.

SSH config

You might like to add the following configuration to your ~/.ssh/config :

Host gerrit.lix.systems
User YOUR_GERRIT_USERNAME
Port 2022
Keep sessions open for a bit in the background to make connections faster:
ControlMaster auto
ControlPath /tmp/ssh-%r@%h:%p
ControlPersist 120

Basic workflow for a change

The unit of code review is a "change", which yields a single commit when "submitted" (merged).
The commit message is taken from the change description in Gerrit; in our experience this tends to
lead to more comprehensive commit messages.

For a change to be merged, it must have the following four "votes", in Gerrit's terminology:

e Set by reviewers:

o +2 Code-Review: the committer that reviewed this thinks it can be submitted as-is
(all users can vote +1/-1, expressing a weaker view on code acceptability)

o +1 Has-Release-Notes: means the reviewer thinks your commit added relevant
release notes for that commit, or that it does not need any. This serves primarily as
a reminder.

o +1 Has-Tests: means the reviewer thinks your commit added all the tests that
commit needs, or that it does not need additional tests. Like Has-Release-Notes, this

https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://docs.google.com/presentation/d/1C73UgQdzZDw0gzpaEqIC6SPujZJhqamyqO1XOHjH-uk/view
https://gerrit.lix.systems
https://man7.org/linux/man-pages/man5/ssh_config.5.html

serves primarily as a reminder.
e Set automatically by ClI:
o +1 Verified: means Cl successfully built for all our platforms and passed all tests

If you're newly part of the core team you will need to add yourself to the Gerrit lix group,
otherwise you can't set the Has-Release-Notes Or Has-Tests labels. If you're not, this doesn't affect
you.

When all of those labels are set, a change becomes Ready to submit, in Gerrit's termology, and
Gerrit will give you a Submit button in the top right:

Gerrit cHANGES - YOUR ~ DOCUMENTATION ~ BROWSE ~ Q status:open -is:wip ® £ avrRAD

#1055 v remove the autoconf+Make buildsystem (O ~ SUBMIT LYREBASE (D ABANDON " EDIT

Change Info SHOW ALL v REPLY Relation chain

Qe B Qyriad remove the autoconf+Make buildsystem Tlake: refacte reation

Reviewers (ja) (buildbot) #* package: default the build-release-notes v (Submittable)
N We're not using it anymore. Any leftover bugs in the Meson buildsystem

- remove the autoconf+Make bu ten v (Submittable)
are now just bugs.

Repo | Branch lix | main
Topic 7 ’

> Merge conflicts
Closes #249.

Submit Requirements
@ Code-Review Change-Id: I0465a6c37ae819f94d40e7829f5bffB46aa63d73

@ Has-Release-Notes /' EDIT
@ Has-Tests libutil: add some s

© Verified Comments (521 resolved P

Checks @) break the build, on

Comments Checks
Base ¥ — Patchset5 ~ 3b92338 |0 Diff view: §l = * DOWNLOAD EXPAND ALL

File Comments Delta

Commit message

By convention, the change author has the final say on clicking the Submit button (note: this is
the opposite of the Github convention), and there is no special permission to merge a change once
it has been fully reviewed (the permissions are in the reviewer +2'ing it). This gives you a last
chance to have a look at your change before merging it.

Workflow tips

Local branches and commits

Gerrit is very mean to you if you don't have your local commit history in a linear presentable state,
which takes getting used to but it is very low overhead once you get used to it. In short, amended
commits become "patchsets", new commits become changes, and multiple commits help link your
changes together as a "relation chain".

Note: if you're coming from Chromium, this is different to how they use Gerrit, where multiple commits become
patchsets, and only the first commit on a local branch creates a new change.

Gerrit’'s commit-msg hook generates a new Change-Id for each commit you make, which in turn

creates a new change that gets reviewed separately. To update an existing change after review
feedback, amend or squash your changes into your old commit, keeping its Change-Id unchanged,

https://wiki.lix.systems/uploads/images/gallery/2024-05/screenshot-20240507-165352.png
https://gerrit.lix.systems/Documentation/cmd-hook-commit-msg.html
https://gerrit.lix.systems/Documentation/user-changeid.html

then push.

Consider not pushing for review before it is clean, or split commits up with git-revise (good) or jj
(better) after the fact, amending as you work. If you want a backup of your changes, you can fork it
on Forgejo and push to that fork.

Basic Pushing

If you cloned the repo from Forgejo, be sure to change your remote URL to point to Gerrit before
continuing. Assuming your remote is called origin (which is the default):

git remote set-url origin ssh://{username}@gerrit.lix.systems:2022/lix

Then you can push to Gerrit with:

git push origin HEAD:refs/for/main

If you get tired of doing this every time, you can automate it by setting the .git/config as follows:
git config remote.origin.push HEAD:refs/for/main

You will have to do that in each fresh check-out. Once it's done, git push will work without
additional options.

If you get a “remote unpack failed” error while pushing, run git fetch then try again.

If you wish to push a change and immediately mark it as WIP, you can push with -o wip , or make
that the default behavior by checking Set new changes to "work in progress" by default in Gerrit's user
settings, under "Preferences".

Topics & Push Arguments

A Gerrit topic may be set on push with:

git push origin HEAD:refs/for/main%topic=foo

Which will create all pushed changes with the topic "foo". Topics are helpful for grouping long
series of related changes.

A change may also be marked as "work in progress" on push:
git push origin HEAD:refs/for/main%wip

Gerrit has documentation on other push arguments you can use here, but it also takes a help

argument whose output is more canonical and might be easier to understand, which you can view
with:

https://git.lix.systems/lix-project/lix
https://gerrit-review.googlesource.com/Documentation/cross-repository-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html

git push origin HEAD:refs/for/main%help

At the time of this writing (2024/06/26), that output looks like this:

$ git push origin @:refs/for/main%help

Total 0 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Processing changes: refs: 1, done

remote:

remote: Help for refs/for/branch:

remote:

remote: --base BASE : merge base of changes

remote: --cc CC : add CC to changes

remote: --create-cod-token : create a token for consistency-on-dema
remote: nd (default: false)

remote: --deadline NAME : deadline after which the push should
remote: be aborted

remote: --edit (-e) : upload as change edit (default: false)
remote: --hashtag (-t) HASHTAG : add hashtag to changes

remote: --help (-h) : display this help text (default: true)

remote: --ignore-automatic-attention-set-rules : do not change the attention set on

remote: (-ias, -ignore-attention-set) this push (default: false)

remote: --label (-1) LABEL+VALUE : label(s) to assign (defaults to +1 if
remote: no value provided)

remote: --merged : create single change for a merged

remote: commit (default: false)

remote: --message (-m) MESSAGE : Comment message to apply to the review
remote: --no-publish-comments (--np) : do not publish draft comments
remote: (default: false)

remote: --notify [NONE | OWNER | : Notify handling that defines to whom
remote: OWNER_REVIEWERS | ALL] email notifications should be sent.
remote: Allowed values are NONE, OWNER,

remote: OWNER_REVIEWERS, ALL. If not set, the
remote: default is ALL.

remote: --notify-bcc USER : user that should be BCC'd one time by
remote: email

remote: --notify-cc USER : user that should be CC'd one time by
remote: email

remote: --notify-to USER : user that should be notified one time
remote: by email

remote: --private : mark new/updated change as private

remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:

remote:

(default: false)
--publish-comments : publish all draft comments on updated
changes (default: false)
--ready : mark change as ready (default: false)
--remove-private : remove privacy flag from updated

change (default: false)

--reviewer (-r) REVIEWER : add reviewer to changes

--skip-validation : skips commit validation (default:
false)

--submit : immediately submit the change

(default: false)

--topic NAME . attach topic to changes
--trace NAME : enable tracing
--wip (-work-in-progress) : mark change as work in progress

(default: false)

To ssh://gerrit.lix.systems:2022/lix

! [remote rejected] HEAD -> refs/for/main%help (see help)

error: failed to push some refs to 'ssh://gerrit.lix.systems:2022/lix'

Pulling

Pulling from Gerrit will work normally. It's worth keeping in mind that sometimes a CL you're
working on has been edited in the web Ul or by another contributor, so the commit in your repo
isn't the latest. Rebasing will usually make the duplicate go away; this is part of the normal rebase
semantics, not Gerrit magic. You might consider making rebase-on-pull your default.

Sandbox branches

This feature has some notable ways to shoot yourself in the foot. We still support it,
since it allows for running Cl builds on things before they become proper CLs. If you
don't need that and don't want to worry about the footguns, consider using a branch on
a Forgejo fork for sharing WIP code.

In particular, if a commit is in any branch already including a sb/ branch, it will be

rejected with the error "no new changes" if it is later pushed to refs/for/main . This can

be worked around by amending all the commits so they are distinct, or by git push origin

HEAD:refs/for/main%base=$(git rev-parse origin/main) , which forces the merge-base

Use refs/heads/sb/USERNAME/* .

https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/error-no-new-changes.html
https://gerrit-review.googlesource.com/Documentation/user-upload.html#base

Cl rerun

Push the CL again with a no-changes commit amendment if you want to force Cl to rerun.

Finding CLs to review

Consider bookmarking: https://gerrit.lix.systems/qg/status:open+-is:wip+-author:me+label:Code-

Review%3C2

Revision #14
Created 25 March 2024 04:26:40 by jade
Updated 7 September 2024 21:39:34 by wiggles dog

https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2
https://gerrit.lix.systems/q/status:open+-is:wip+-author:me+label:Code-Review%3C2

