
Language versioning
This document is extremely a draft. It needs some editing and discussion before it can be made
into a useful thing. It's been simply copy pasted out of the pad in its current form.

See also
FIXME: piegames langver ideas

musings
puck: honestly, having language version as part of a scopedImport-style primop would be funny
horrors: we're shitposting about setting language version from the source accessor

horrors: use features...; file head clause
jade: this can be combined into feature sets like editions or such. we might become
ghc haskell but whatever.

horrors: [some kind of file head clause and/or propagation is the] only real way out of this
mess that doesn't require a package manager in the package manager
jade: yeah. doing it from flakes seems initially sane until you realise you can import below
the flake in the same git repo and then blegh
horrors: an ambient minimum-language-version binding in builtins that can be
scopedImport'ed for flake support on top of this

horrific writeup
basic mechanism
add a new syntactic element that is only valid at the head of a file and used only to declare
language requirements. nix versions that cannot satisfy all requirements must reject this element
to situations in which two nix versions parse the same file differently, or even evaluating the same
file to different derivation hashes. any kind of comment as used by eg GHC is not viable for nix for
this reason.

proposed syntax for the first implementation: use $($feature: ident)+;

anything ahead of this directive could be either unversioned nix code or versioned nix code (see
below for details), but since the directive is only valid at the head of a file or expression this "code"
can only be comments. this kind of locks us into supporting the current comment syntax forever,

but the comment syntax is rather fine so this won't be a problem.

each feature may declare a syntactical requirement for the file, a semantic requirement, or
possible both (cf rust editions, or perl use v<something>).

features may be global, namespaced to their implementations, or live in a reserved experimental
namespace an implementation can add to and remove from as it wishes with absolutely no
guarantee of future evaluatility.

syntactic features
syntax is entirely local to the file itself and has few to no intercompatibility constraints with other
code. a very useful syntax requirement would something like no-url-literals , which might strip the
syntactic ability to parse url-like sequences of characters into strings and, rather than nix currently
does the experimental feature of the same name simply throwing a parse error, parse them as eg a
lambda with a sequence of divisions in its body.

(realistically no-url-literals would not appear in practice, instead it should be implied by use itself
since url literals are such an obvious misfeature)

semantic features
semantic features produce evaluation changes that could be achieved any other way. examples of
this are:

the recent change that evalutes x in inherit (x) names... at most once overall rather than
once per inherited name accessed
potential extensions to the string context mechanism
new types of values

semantic changes may escape the expression that requires them and usually some of amount of
cross-compatibility with other semantic versions must be given. using the same examples as
above, considerations can include:

observable side-effects changing (if x includes a call to trace)
getContext returning sets an outside use may not expect
value types being unknown to outside users and causing failures

this is in fact a full classification of cross-compatibility issues: side-effects changing, evaluation
outputs changing, and evaluation inputs changing. side-effects need not be considered very much
since nixlang is supposed to be pure and all side-effects that are not part of the store interface
must already be considered incidental. evaluation outputs changing can be handled by optional lint
or runtime warnings when a versioned evaluation structure passes a semantic version boundary
without being annotated as an intentional behavioral leak. evaluation inputs changing is a non-
issue because nix plugins and the ExternalValue infrastructure already make it impossible to rely on
the type system being fully specified at the time an expression is written

inter-file inter-actions
by default language features must not be propagated across an unadorned import boundary to
retain compatibility with existing nix code (eg nixpkgs, which will not be able to switch for quite
some time). in some circumanstances it is however required to propagate language features across
imports to provide a consistent and meaningful interface, eg in the case of a hypothetical
requiredLanguageFeatures attribute for a flake. to allow for both of these requirements to peacefully
coexist we add a new primop:

if the imported expression selects a different set of language features the features specified by
scopedImportUsing are ignored.

scopedImportUsing is available in the builtins set and crucially, can be replaced. this allows a
hypothetical flake implementation to replace both scopedImportUsing and import with its own
versions that provide propagation behaviors that might be expected from such a library:

importing within the same flake simply propagates the language features as-is
importing across flake boundaries first resolves the language versions used by the
imported-from flake, then applies and propagates using these features. if the imported-
from flake then imports code from elsewhere this cycle repeats and can eventually restore
the language features set to its original value when importing code next to the code
importing the importing code

scopedImportUsing
:: { features ? <current language features> :: AttrSetOf bool
 ## ^ language features as would be specified by `use ...;`.
 ## selecting a default-off feature is achieved by setting its key to `true`,
 ## deselecting a default-on feature is achieve by setting its key to `false`.
 ## nesting is not needed because features are identifiers. future changes to
 ## the use interface may extend the type of this set.
 , newGlobals ? env: env :: AttrSetOf Any -> AttrSetOf Any
 ## ^ function to produce the new global environment. it receives the default globals
 ## set for the target expression language features (as calculated form `features` and
 ## the target `use` clause) and produces a new set.
 ## `scopedImport` behavior is recovered by setting this to `const newEnv`.
 }
-> PathLike
^ imported path as in `scopedImport`
-> Any
^ import result. may be cached, most immediately using the intransparent internal
object id of the provided features and the globals set. this mimics the beavior
or `import` in cppnix

importing out of a flake boundary (as might be possible in an impure mode) resets the
propagated language feature set as if it had never been set in the first place

additionally the current language features might be made available through a builtin value
languageFeatures by such a replacement of scopedImportUsing .

builtins versioning, global versions
a language feature may add or remove elements of builtins or the global environment. as
mentioned earlier this does not pose a large hazard since evaluation is sufficiently unespecified
that this must already be expected to happen.

interactions with eg nixpkgs lib
nixpkgs lib (and other libraries) will have to cater to the smallest common denominator when
exposing library functions/constants as they do now. if we change a function to have a different
prototype and a library reexports it from builtins to its own namespace the language features used
by the code importing the library do not matter. to make this problem less unbearable we may
want to introduce a concept of library objects and a "use library" directive like eg python from ...
import ... that can pass language features down to the library being imported in some way.

as a first approximation is would be sufficient to encourage libraries to version their namespaces in
such a way that accessing a namespace that relies on language features not present in the current
evaluator will fail to evaluate (eg by providing the library itself as a plain set and each version as
an attribute that (lazily) imports the specific version of the library needed to fulfill the requested
version).

bad ideas for features to remove/change in the
first langver

remove url literals
remove with
remove rec (including __overrides)
remove let { body = ...; ... }
remove or contextual keyword, either rework or make a real keyword
extend listToAttrs prototype to also accept 2-tuples instead of name-value-attrpairs
remove __sub and similar overloading

Feature detection
jade: I think we might want to be able to feature detect certain features, e.g. new builtin args,
which can be done without, but we would like to know if they are there.

builtins.nixVersion has been defanged, which means that an alternate cross impl compatible
mechanism needs to be created.

Minimally thought-through proposal
builtins.features is an attribute set, where individual attribute names are exposed with the value true
if they are implemented by a given implementation.

Attribute names are of the format:

"domainname.feature", for example, "systems.lix.somefeature".

Revision #2
Created 7 April 2024 23:09:49 by jade
Updated 7 April 2024 23:23:02 by jade

