
Nix lang v2
The Nix language unfortunately is full of little and big design accidents. Only so much can be fixed
without breaking backwards compatibility.

Our goal is to design an improved Nix language revision, working title "Nix 2". To keep the scope
manageable, the first iteration of language improvements will be restricted to be mostly backwards
compatible and only require minimal migration effort. This allows us to test the process on a
smaller scale, as well as allows us to get the quick and easy improvements out as soon as possible
for others to use.

Join the discussion on Matrix: #nix-lang2:lix.systems

The rough action plan is:

1. Fork the grammar and gate its usage behind a feature flag.
2. Use the new grammar as a playground to experiment and implement fixes and

improvements to the language, free of any constraints of backwards compatibility.
3. Figure out language versioning and prepare interoperability.
4. Provide a migration path, stabilize the new language, and make it available to users.

Initial language changes
Fixing floats

Status: Implemented in https://gerrit.lix.systems/c/lix/+/1979
Confidence: High

Grammar: All floats must have a digit before the . . This is a hard requirement for making some of
the other proposed syntax changes parse unambiguously in the first place.

Moreover, floating point semantics are currently broken in several ways. They need to strictly
follow IEE754 double semantics instead.

Given that such a switch is not easy to make in a safe way, as an intermediate solution all floating
point operations should be forbidden, effectively making floating point values opaque to the
language.

Set slicing
Partially adapted from https://github.com/NixOS/rfcs/pull/110.

https://nixos.wiki/wiki/Nix_Language_Quirks
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw
https://matrix.to/#/#nix-lang2:lix.systems
https://wiki.lix.systems/books/lix-contributors/page/language-versioning
https://git.lix.systems/lix-project/lix/src/commit/a957219df2b7f360695f884f45fe4802240b9755/doc/manual/src/language/operators.md#comparison

Status: Draft implemented in https://gerrit.lix.systems/c/lix/+/1987
Confidence: High

Sets can be sliced using set.[key1, key2] and set.{key1, key2} . The first returns a projection of the
listed keys into a list, the second one a subset. All keys must be identifiers (or string identifiers),
scoped to the attribute set.

[TBD: it is unclear as to whether interpolation is useful and how easy it is to implement] Identifiers
may be interpolated: set.[key1, ${key2}] is equivalent to [set.key1, set.${key2}] , set.{key1, ${key2}}
is equivalent to { key1 = set.key1; ${key2} = set.${key2}; } .

Slicing into lists is a replacement for using with :

List and Set unpacking
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1988 and
https://gerrit.lix.systems/c/lix/+/1989
Confidence: Mid

In a list, elements which are lists themselves can be unpacked with the * operator. They will be
concatenated in-place. ["hello", *list, "world"] is equivalent to ["hello"] ++ list ++ ["world"]

This can be easily combined with set slicing. The operator precedence facilitates patterns like the
following:

dependencies = python.pkgs.[
 arabic-reshaper
 babel
 beautifulsoup4
 bleach
 celery
 chardet
 cryptography
];

 configureFlags = [
 "--without-ensurepip"
 "--with-system-expat"
 *(optionals (!(stdenv.isDarwin && pythonAtLeast "3.12")) [
 # ./Modules/_decimal/_decimal.c:4673:6: error: "No valid combination of CONFIG_64, CONFIG_32 and
_PyHASH_BITS",
 # https://hydra.nixos.org/build/248410479/nixlog/2/tail
 "--with-system-libmpdec",

In a set, one can unpack elements like this:

let baz = { bar = "foo"; }; in { foo = "bar"; *baz.{bar}; }

This combines well with optionalAttrs :

])
 *(optionals (openssl != null) [
 "--with-openssl=${openssl.dev}",
])
];

{
 meta = with lib; {
 maintainers = with maintainers; [matthewbauer qyliss];
 platforms = platforms.unix;
 license = licenses.bsd2;
 };

 HOST_SH = stdenv'.shell;

 *lib.optionalAttrs stdenv'.hasCC {
 # TODO should CC wrapper set this?
 CPP = "${stdenv'.cc.targetPrefix}cpp";
 };

 *attrs;

 *lib.optionalAttrs (attrs.headersOnly or false) {
 installPhase = "includesPhase";
 dontBuild = true;
 };

 # Files that use NetBSD-specific macros need to have nbtool_config.h
 # included ahead of them on non-NetBSD platforms.
 postPatch = lib.optionalString (!stdenv'.hostPlatform.isNetBSD) ''
 set +e
 grep -Zlr "^__RCSID
 ^__BEGIN_DECLS" $COMPONENT_PATH | xargs -0r grep -FLZ nbtool_config.h |
 xargs -0tr sed -i '0,/^#/s//#include <nbtool_config.h>\n\0/'
 set -e

It also allows to have "local" let bindings for just some of the keys, without having to move them
out of the entire attrset:

As with convential set declaration, duplicate keys are not allowed.

Note that the pattern of inherit (foo) bar baz; is equivalent to *foo.{bar, baz}; .

Pipe operator function application: |>

This is being worked on in RFC 148

Status: Implemented and released in Nix and Lix as an experimental feature flag pipe-
operator
Confidence: High

In nixpkgs , there is the lib.pipe function which will allows to write g f a as pipe a [f g] . Especially
with deep nested and complicated data transformations, it makes the code flow from left to right
and thus easier to read. Sadly, it is under-used because many people are not aware of it.

The fundamental problem it tries to solve though is that function calls are prefix, i.e. that a data
processing chain with multiple entries is read from right to left. (Or, when adding parentheses, from
the inside to the out side.)

Therefore, we introduce the |> operator. a |> f |> g is equivalent to g(f(a)) .

List indexing
Status: Not implemented yet
Confidence: High

 '' + attrs.postPatch or "";

}

{
 key1 = "value1";
 *let
 stuff = "foo";
 in
 {
 inherit stuff;
 key2 = stuff;
 };
}

https://github.com/NixOS/rfcs/pull/148

TODO link to RFC

Introduce list.INDEX on lists as syntax sugar for builtins.elemAt list index . list.${index} interpolation for
dynamic variables also works like it does for attribute sets. To avoid type ambiguities at runtime,
ident.${expr} is reserved for dynamic attribute access only, dynamic list indexing still requires
using builtins.elemAt

Optional: We could even introduce .last .tail and .length as attributes. Need to think about that. Is
a bad idea because of dynamic typing.

Function list destructuring
Status: Not implemented yet
Confidence: Mid

The same way as function arguments can be destructured into an attrset with {…} , it should also
work with lists. Some restrictions:

Because order matters, arguments cannot have default values.
Like with the attrset syntax, ... indicates that the list may have more arguments.
For now, the ... must always be at the end. This restriction can easily be lifted some time
in the future.
Unlike in other languages, capturing the rest of the list (for example in head:tail patterns
like in Haskell) is not possible because of performance considerations.

This, together with list indexing syntax, will make tuple-style code constructs a first-class citizen of
the language. Replacing nameValuePair alone is expected to give significant performance gains
(short lists are heavily optimized in the evaluator).

Disallow inner-attribute merging
Status: Not implemented yet
Confidence: Mid

Nix has syntax sugar for merging attrsets within attrset declarations: { a = {}; a.b = "hello"; } will be
fused into { a = { b = "hello"; }; } at parse time.

This feature, only rarely used, does not compose well with other features like rec attrsets, leading
to unintuitive semantics and potential foot guns: https://git.lix.systems/lix-project/lix/issues/350,
https://github.com/NixOS/nix/issues/6251, https://github.com/NixOS/nix/issues/9020,
https://github.com/NixOS/nix/issues/11268,
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw#inherit-from-scopes-differently-than-inherit

Since these problems would be deeply aggravated by the new set unpacking syntax (defined
below), it is best to completely remove this feature altogether. Since it only is convenience syntax
sugar, no replacement syntax is necessary.

Expand inherit syntax
Status: Not implemented yet
Confidence: Low

The inherit syntax is adapted to be both more powerful and more consisten with the slicing syntax.
The inherit (from) is made redundant and deprecated for removal in a future language revision.
Inherit can also be used outside of attrsets and let bindings now, and will behave as if it was in a let
binding.

Proper keywords for null , true and false
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1986
Confidence: High

I don't know why these are builtins instead of keywords but at this point I assume it's because it
was faster to implement.

Proper syntax nodes for all arithmetic expressions
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1981
Confidence: High

No more __sub and __lessThan . These had no reason but laziness to exist in the first place.

? and or operator
Status: Draft implementation in https://gerrit.lix.systems/c/lix/+/1990
Confidence: Mid
Write pkgs.foo.bar or default as pkgs ? foo.bar : default , remove the or pseudo-keyword
Unlike with or , no attribute access is needed: value ?: default

?: is more powerful than or , since it also works outside of .

inherit lib.{mkIf, types};
inherit {
 lib.mkif,
 types.{attrsOf, listOf, string}
};
Mixing old with new style syntax: Do we want to allow this?
inherit
 lib.mkif
 types.{attrsOf, listOf, string}
;
This only makes sense within attrsets really
inherit foo;

[Optional] For consistency, function default arguments use ?: instead of ?
?: has a lower priority than function application, which solves a lot of the confusion
? operator for testing attribute set keys becomes a special case of ?: without default
value.

This does not change any of the semantics of ? , but fixes the weird operator
precedence as well

[Optional] Introduce a new operator .? , also inspired by Kotlin. foo.?bar is equivalent to if
foo != null then foo.bar else null .

C# uses ?. instead

All line endings must be \n
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1992
Confidence: High

The current handling of \r is so jank that we'd better do without.

CRLF line endings are allowed within the file for Windows compat, but in strings the line endings
get consistently normalized to LF only.

All files must be valid UTF-8 text
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1991
Confidence: High

The world runs on UTF-8, and most tools these days expect UTF-8 encoded input by default.
There's no reason to allow other encodings or invalid byte sequences.

Sane escape sequences for strings
Status: Implemented in https://gerrit.lix.systems/c/lix/+/2089 and
https://gerrit.lix.systems/c/lix/+/2104
Confidence: Mid
Escape sequences are restricted from anything to \t , \r , \n , \" , \$, \\ , \x… , \u{…}
\ followed by a line break escapes it, a.k.a. string continuation escape (Rust)
$$ does not escape $$ anymore, so $${} is now a dollar with an interpolation

Indented strings
Don't strip indentation of first line

Status: Implemented in https://gerrit.lix.systems/c/lix/+/2104
Confidence: High

The current behavior is just weird, both for single-line strings (commonly used for unquoted ") and
multi-line strings. The new behavior is also what Haskell does (in its new multiline strings proposal).

Indented strings work with tabs
Status: Implemented in https://gerrit.lix.systems/c/lix/+/2105
Confidence: High

Programming languages may be opinionated, but making some features work only with space
indentation is crossing a line.

Tabs and spaces can be mixed as part of the string's content, but not for the string's indentation.
Indentation is calculated based on the longest common prefix.

Old cruft to remove
https://wiki.lix.systems/link/21#bkmrk-bad-ideas-for-featur

Remove unquoted URLs
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1982
Confidence: High

DSL or not, you'll survive typing those two additional extra characters.

Remove let {} syntax
Status: Implemented in https://gerrit.lix.systems/c/lix/+/1980
Confidence: High

And also the special body attribute.

__override special attribute
Status: Implemented in TODO
Confidence: High

No more magic attributes please. __functor is already bad enough.

Fix tokenization rules
https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#token-boundaries-
aren%E2%80%99t-real-and-will-hurt-you-cf-nix-iceberg

Status: Partially implemented in https://gerrit.lix.systems/c/lix/+/1984

Autocaller must die
Status: Not implemented

wtf?

Future language changes
Some changes to the syntax would make large chunks of existing code invalid. These need to be
postponed until proper versioning and migration tooling have been figured out.

Comma separated lists (confidence: high)
Currently list items are space separated. This has two major drawbacks:

1. This is inconsistent with most other language syntax features, which use , or ; as item
separator.

2. Not having them requires using parentheses around function calls in lists. Those are
currently easy to forget, causing confusing type issues for beginners. (This would be less
of an issue if we had a type system that could catch the mistake early on …)

Function declaration (confidence: low)
args@ now always also contains the default values (are there use cases where one strictly
needs this not to be the case? Regardless, that behavior could be manually emulated if
necessary)
The ? for defaults becomes ?:
Functions can also destructure list arguments: [name, value]: _ as a replacement for
nameValuePair and and to make tuples a first-class citizen (together with list indexing).

Note however that this change conflicts with comma separated lists because having
both would cause too much lookahead in the parser.

NUL bytes must be supported within strings
Status: Blocked on rewriting the garbage collector to be compatible

0-terminated strings were a mistake, and we should not make any concessions in the language to
implementations who use them. Especially when they're buggy.

Paths

Comments
While we are touching the syntax, let's leave some space here to discuss code comments.

I like having the distinction between commented out code (syntax highlighting:
unobtrusive) and commenting code (syntax highlighting: vivid).

❯ nix-build --expr '[[[({a}: [a])]]]' --arg a 'with import <nixpkgs> {}; hello' --no-link
fetching path input 'path:/nix/store/nyysli8lhjf03jgyvrf7mlxrlgnqn9qp-source'
/nix/store/kwmqk7ygvhypxadsdaai27gl6qfxv7za-hello-2.12.1

https://md.darmstadt.ccc.de/xtNP7JuIQ5iNW1FjuhUccw?view=#nul-handling-makes-no-sense

We should leave some room for semantic doc comments, should they ever come in Nix
(TODO link respective discussions)
There is this concept of "semantic comment" that comments out entire AST nodes. This is
immensely useful even though few languages have it. (Caveat: the commented out code
must at least be syntactically correct.)

TODO

Revision #7
Created 18 August 2024 14:38:02 by piegames
Updated 5 December 2024 20:17:59 by piegames

