
regexp engine investigation
nix uses libstdc++'s std::regex . it uses whatever version of libstdc++ the host system has.

which it invokes in both std::regex_replace std::regex_match modes.

nix occasionally uses the flags std::regex::extended and std::regex::icase which determine the
available features - it's always either no flags, or both of these together. there's also a couple
things that use the flag std::regex::ECMAScript . when the constructor is called without a flags
parameter, the flags default to std::regex::ECMAScript (see method signature in C++23 32.7.2), so
really we have only two cases.

std::cregex_iterator and std::sregex_iterator are used.

there's a header regex-combinators.hh which defines regex::group and regex::list and a couple
others that are unused. but those are just trivial textual things, not extensions, so we can ignore
the file.

getting the C++ standard
someday when C++23 is official you will be able to pirate the PDF. otherwise, you can clone
https://github.com/cplusplus/draft and check out the tag n4950 which is the current formally
adopted working draft as of 2024-03-14 and is intended to have the same technical content as the
final standard. you can then invoke make in the source subdirectory which will produce std.pdf .
you will need LaTeX installed. if you're ever not sure which working draft is the one that became a
particular version of the standard, Wikipedia will probably tell you...

(personally I install texlive.combined.scheme-full from nixpkgs on all my machines that have room for
it, but this is surely more than necessary, it just makes me feel warm and fuzzy -- Irenes)

chapter 32 is the one that documents regular expressions.

open questions that require reading the standard
what are all the syntactic and semantic constructs we need to support?

required functionality
the extended flag, per the C++ standard, "Specifies that the grammar recognized by the regular
expression engine shall be that used by extended regular expressions in POSIX.". it references
POSIX, Base Definitions and Headers, Section 9.4.

the ECMAScript flag "Specifies that the grammar recognized by the regular expression engine shall
be that used by ECMAScript in ECMA-262, as modified in [section 32.12 of the C++ standard]." it
references ECMA-262 15.10. the changes in 32.12 are important and probably do create real
compatibility issues for us, though fortunately it's only a single page.

if we complete this chart we can use it to assess which existing engines would meet our needs, or
how much of a pain in the ass it would be to make a new one

the columns are the two ways it gets invoked

extended + icase ECMAScript

Syntactic constructs -- --

(TODO: fill in every construct here)

Semantics -- --

Case-insensitivity yes ?

(TODO: fill in other behaviors here)

Revision #1
Created 27 March 2024 01:10:07 by jade
Updated 3 April 2024 19:51:18 by jade

