
RISC-V support
Goal: install lix on a riscv64-linux system

The target is a DevTerm R-01, so it's an AllWinner D1 RISC-V processor @ 1GHz, with 1GB of
memory and 32GB of microSD.

We can't run the Lix installer without building it, because there's no canned build for it. So let's try
building it natively:

This doesn't work because there's some conditional complication^Wcompilation that doesn't cover
riscv64. So we need to open self_test.rs and add an entry:

At this point, it will, in principle, build. In practice, however, 1GB is just not enough RAM. If you add
some swap it'll make it to the last step, but then it wants 1.5GB+ for that. I wouldn't try it on a
system with less than 2GB, and ideally more.

Ok, native build is a bust unless I want to let it thrash all night. So let's cross-compile it on ancilla ,
which is, conveniently, already running nixos.

The nix-installer flake doesn't come with riscv64 cross support, and rather than try to figure it out I
just winged it with nix-shell. I am skipping over a lot of false starts and blind alleys here as I ran
into things like dependency crates needing a cross-compiling gcc, or rust not having a stdlib on
riscv64-musl.

$ rustup
$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ RUSTFLAGS="--cfg tokio_unstable" cargo install --path .

 #[cfg(all(target_os = "linux", target_arch = "riscv64"))]
 const SYSTEM: &str = "riscv64-linux";

$ git clone https://git.lix.systems/lix-project/lix-installer
$ cd lix-installer
$ $EDITOR shell.nix
with import <nixpkgs> {
 crossSystem.config = "riscv64-unknown-linux-gnu";
};
mkShell {
 nativeBuildInputs = with import <unstable> {}; [cargo rustup];

The build invocation is a bit more complicated here, because we need to tell it where to find the
linker:

Since we couldn't do a static musl build it needs the nix ld.so, but we can get around that!

}

$ nix-shell
[long wait for gcc to compile]

$ export RUSTUP_HOME=$PWD/.rustup-home
$ export CARGO_HOME=$PWD/.cargo-home
$ rustup default stable
$ rustup target add riscv64gc-unknown-linux-gnu
$ edit src/self_test.rs
[apply that same patch to SYSTEM]

$ RUSTFLAGS="--cfg tokio_unstable" cargo build \
 --target riscv64gc-unknown-linux-gnu \
 --config target.riscv64gc-unknown-linux-gnu.linker='"riscv64-unknown-linux-gnu-gcc"'
[another long wait]

$ file target/riscv64gc-unknown-linux-gnu/debug/lix-installer
target/riscv64gc-unknown-linux-gnu/debug/lix-installer:
 ELF 64-bit LSB pie executable, UCB RISC-V, RVC, double-float ABI,
 version 1 (SYSV), dynamically linked,
 interpreter /nix/store/g4xam7gr35sziib1zc033xvn1vy9gg8m-glibc-riscv64-unknown-linux-gnu-2.38-44/lib/ld-
linux-riscv64-lp64d.so.1,
 for GNU/Linux 4.15.0, with debug_info, not stripped

$ scp target/riscv64gc-unknown-linux-gnu/debug/lix-installer root@riscv:.
$ ssh root@riscv
./lix-installer
-bash: ./lix-installer: no such file or directory

ldd ./lix-installer
/nix/store/.../ld-linux-riscv64-lp64d.so.1 => /lib/ld-linux-riscv64-lp64d.so.1
[other output elided]

/lib/ld-linux-riscv64-lp64d.so.1 ./lix-installer

Sadly we can't actually use it to install, because nix_package_url needs a default value, and on RISC-
V, it doesn't have one! It's self_test.rs all over again except it doesn't manifest until runtime.

So, off to src/settings.rs we go. It doesn't need to be a valid URL, just something URL-shaped.

Rebuild, re-push, re-run:

Ok, missed a few places in settings.rs, let's put a quick and dirty hack in there:

The Determinate Nix installer (lix variant)
[...]

/// Default [`nix_package_url`](CommonSettings::nix_package_url) for unknown platforms
pub const NIX_UNKNOWN_PLATFORM_URL: &str =
 "https://releases.lix.systems/unknown-platform";

 #[cfg_attr(
 all(target_os = "linux", target_arch = "riscv64", feature = "cli"),
 clap(
 default_value = NIX_UNKNOWN_PLATFORM_URL,
)
)]

/lib/ld-linux-riscv64-lp64d.so.1 /opt/lix-installer install linux
Error:
 0: Planner error
 1: `nix-installer` does not support the `riscv64gc-unknown-linux-gnu` architecture right now

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 url = NIX_UNKNOWN_PLATFORM_URL;
 nix_build_user_prefix = "nixbld";
 nix_build_user_id_base = 30000;
 nix_build_user_count = 32;
 },

 #[cfg(target_os = "linux")]
 (_, OperatingSystem::Linux) => {
 (InitSystem::Systemd, linux_detect_systemd_started().await)
 },

It also needs a tarball to install; jade_ kindly updated the flake for it to support riscv64, so we just
check it out (or, well, check out review branch 1444) and then nix build -L .#nix-riscv64-
linux.binaryTarball and away we go.

This, it turns out, also doesn't work, because the installer is hardcoded to expect the directory the
tarball contains to start with nix-* . You can either unpack and repack the tarball to meet that
requirement, or find all the places in lix-installer that assume that and edit them -- they're in
src/action/base/move_unpacked_nix.rs and src/action/base/setup_default_profile.rs .

Finally, this particular kernel lacks seccomp support -- in order to get it working, I had to edit the lix
(not lix-installer) package.nix and add (lib.mesonEnable "seccomp-sandboxing" false) to the meson flags.

And with that done, it works!

root@devterm-R01:~# uname -a && nix --version
Linux devterm-R01 5.4.61 #12 PREEMPT Wed Mar 30 14:44:22 CST 2022 riscv64 riscv64 riscv64 GNU/Linux
nix (Lix, like Nix) 2.90.0pre20240613_dirty

Revision #2
Created 14 June 2024 02:26:53 by Becca
Updated 14 June 2024 22:30:29 by Becca

