
Why Lix?
(page under construction. editor's note: parts of https://pad.lix.systems/lix-manifesto (PRIVATE) are
ported, parts need review before posting here)

(editor's note (ii): this page wants to be a contributor facing page, as opposed to the website page
that maybe will have more general info?)

We should introduce ourselves! We are the Lix team, and we are working on a fork of CppNix
focused on stability and user experience over features.

Core team members
puck (@puckipedia), she/her
hexchen (@hexchen), she/her
hexchen is working primarily on mantaining and extending the Lix project infrastructure.
Qyriad (@Qyriad)
Build system experts who delve way, way too deep into tooling
eldritch horrors (FIXME(horrors): github if desired?), they/them
wiggles (@9999years), she/her
Irenes (@IreneKnapp), they/them
jade (@lf-), they/them
jade is working on packaging, testing, infrastructure, tooling, review, stability, and a large
amount of the writing in Lix. They are currently studying Computer Engineering at UBC in
Canada.
raito (@RaitoBezarius). he/they
Raito is working on nixpkgs packaging, infrastructure, review in Lix.
They are a Tvix developer focusing on the store and the evaluator.
Kate Temkin (@ktemkin)
A performance art piece written live by a collective of hardware hackers & low-level
engineers. Kate works on Lix as part of a commitment to helping you do cool things, and
is seriously considering rewriting every bit of documentation ever to cross paths with Nix.
Lunaphied (@lunaphied), she/her (singular), they/them (plural)
Lunaphied spend a disproportionate amount of their time considering how to get FPGAs as
far from Earth as possible. When they’re not working on Space Stuff, they consider doing
the same for Nix regressions.

FAQ

https://pad.lix.systems/lix-manifesto
https://github.com/puckipedia
https://github.com/hexchen
https://github.com/Qyriad
https://github.com/9999years
https://github.com/IreneKnapp
https://github.com/lf-
https://github.com/RaitoBezarius
https://github.com/ktemkin
https://github.com/lunaphied

What is Lix anyway?
Lix is a fork of CppNix 2.18, focused on stability and the user experience of both users and
contributors. We want to create a safe platform to move Nix technology forward, as a piece of
critical infrastructure.

To this end, we have instituted a freeze on the core, where we apply high standards to changes to
the core of the system and pursue testing and stability as our first priority on the core. Our long
term vision is to shrink and decouple parts of the core, and move features like Flakes to the
periphery of the system.

To achieve our goals in user experience, we are allowing significantly more contributions, still with
tests, to the user facing surface of the system where there are fewer stability guarantees, and
explicitly define what is expected to be stable and what can change.

Part of our work on the interface of Lix is in Qyriad's project Xil, which is an experiment in an
alternate CLI for Nix implementations, which will potentially slowly merge with the Lix CLI.

Technical differences from CppNix
Lix is built with Meson, so language servers will just work on it
Lix does not include lazy trees, and does not intend to use the upstream implementation
of lazy trees; something like lazy trees is planned (FIXME: publish the planning document
for that).
Lix does not use libgit2 and does not intend to use it
Lix is entirely self-hosted in terms of infrastructure and uses Gerrit/Forgejo instead of
GitHub
nix repl can :doc library functions
nix repl can accept overlays as config files; see repl-overlays release note in the sources
Performance improvements (8-20% faster than 2.18)

Views on flakes
The Lix project acknowledges that flakes are the way that the majority of people use Nix today, and
does not intend to remove support for them. However, as part of our overall focus on stability and
dependability, some features of Flakes will be changed to be stricter.

Flakes are not the only way to write Nix language code in Lix, and we intend to provide a good
experience to flakes users, while also improving the experience for those not using flakes, by
evolving a compatible but more flexible flake-like abstraction in the periphery of the Lix system.

Why is Lix different from tvix?
tvix is a Nix implementation from the ground up in Rust, aiming to be compatible with CppNix, by
building a system from the ground up. It is developed by some of the same people. tvix also aims
to improve the stability of Nix technology, but with the approach of starting from the beginning.

https://wiki.lix.systems/link/9#bkmrk-freezes
https://github.com/qyriad/xil

Lix is intended to evolve CppNix into a stable foundation for future evolution, without breaking
clients along the way. Its goals are to aggressively pursue technical debt and remove the skeletons
from the closet, while remaining deliberate about behavioural changes through testing. Lix will
contain Rust components in the near future.

The two projects have similar goals but different approaches, and there will likely be cross-
pollination between them; though cross-pollination of code is difficult due to licensing.

Revision #9
Created 25 March 2024 21:30:55 by jade
Updated 5 May 2024 23:49:31 by Qyriad

