Auth/SSO systems

A major part of Lix infrastructure is the authentication/SSO systems. Here, you can find information
about how to run them.

Changing names, emails, etc

How accounts work

How do permissions work?

Assigning Groups

e Tutorial: adding auto mapping of forgejo groups

Changing names, emalils, etc

The Lix project endeavours to not deadname people, because we believe in human decency.
However, some of our software has other ideas. This page documents the workarounds to manually
fix profile updates that don't get conducted because various software is busted.

Intended design

Ideally, contributors should be able to go to https://identity.lix.systems and change their
usernames, display names and emails and relog every service, and then every service will have
correct names and emails.

wiki.lix.systems

The wiki does not update emails when they are changed via OIDC. Furthermore, users can't change
them themselves. Why do they do this, we will never know; OIDC has persistent UUIDs, they have
no reason to do this.

To fix a user's email manually, go to https://wiki.lix.systems/settings/users, and select the user in
question and edit them.

The wiki will also not change fullnames automatically, which is also broken, but users can simply
change them. It does not seem to use usernames at all.

git.lix.systems

I Currently this is broken and we cannot change forgejo usernames at all:

https://git.lix.systems/lix-project/web-services/issues/93. The workaround here is to clear the
username field when changing to a local account.

Forgejo blocks username changes for accounts with external sign-in for no reason. These have to

be fixed by an administrator. Go to https://git.lix.systems/admin/users, click the edit icon next to
the user in question, then set the Authentication Source to Local, fix the username, then press
Update User Account. Next, set the Authentication Source back to Lix.

Users are able to change emails themselves by adding a new email then deleting the old one. They
can also be changed by administrators in the same page as above.

OIDC has persistent UUIDs, there is no reason for Forgejo to do this.

https://identity.lix.systems
https://wiki.lix.systems/settings/users
https://git.lix.systems/lix-project/web-services/issues/93
https://codeberg.org/forgejo/forgejo/issues/687
https://git.lix.systems/admin/users

Forgejo does not update names or emails from Keycloak after initial login, which is broken as well.

gerrit.lix.systems

Gerrit will break accounts rendering them incapable of logging in if they change username.
Changing email and display name works as expected. It appears that Gerrit wants to believe that
usernames are not possible to change, which is a skill issue, because they have numeric IDs.

Extremely untested scuffed-looking db hacking procedure:

https://wikitech.wikimedia.org/wiki/SRE/LDAP/Renaming_users/Gerrit

pad.lix.systems

We think this one works properly last time we checked. It seems to just replace the profile on each
login.

https://wikitech.wikimedia.org/wiki/SRE/LDAP/Renaming_users/Gerrit

How accounts work

Lix has one source of truth for authentication: Keycloak (identity.lix.systems). Most services are
bound to Keycloak for authentication via OAuth2, although it supports SAML as well.

GitHub vs Local accounts

GitHub accounts are used at Lix for two reasons:

e Ease of login and onboarding
e Ban/allow list management

We don't really care if people have the same username or other information on Lix as they have on
GitHub. We don't care about whether people have first/last names on our Keycloak or if they are
using pseudonymes.

Allow/ban listing

There is an allow-list and a ban list maintained at: https://git.lix.systems/lix-project/access-control
(private repo, available only to Lix core team). To add people to a list, use ./add.sh list.txt gh-
username . Once a list change is pushed, it can take up to five minutes for the change to take effect,
as this is currently running on a 5m cron job.

In short, the process for adding a user to the ban or allow list is:

1. Make sure you have the latest version of the repo (i.e. git pull) and the github gh
command is installed.

2. Run ./add.sh <relevant-list-file> <github username> .

3. Commit and push the change.

4. The ACL change will apply automatically within five minutes.

Be warned -- the allow-list method of access control is temporary / established for the
beta period.

Our allow/ban listing is done by GitHub ID, using keycloak-allowban-plugin, a custom Keycloak
plugin that reads text files with allow/ban lists. The GitHub ID is put into a user profile attribute,
which prevents ban-evasion via account unlinking since it will stick across unlinking.

Known weirdness with the allow/ban list plugin

If a user tries to log in via GitHub and they are not allowed by the plugin, the account is created
anyway, it is simply not usable. This is a known issue; putting the plugin in the registration flow
caused half-registered users, so it is only in the post-gh-login flow and the normal login flow (to

https://git.lix.systems/lix-project/access-control
https://git.lix.systems/lix-project/keycloak-allowban-plugin

catch unlinked banned accounts).

Local accounts

The Lix core team should have local accounts (linking to GitHub is OK), strongly preferably with
2FA. Other people can be given local accounts if they are trustworthy and prefer to have local
accounts (since the usual ban process doesn't work on them; though it is not hard to ban them, just
disable the account).

Note that GitHub backed accounts can be turned mostly into local accounts by the user simply
setting up local auth and unlinking the GitHub account (though the GitHub ID will intentionally
persist in properties so this doesn't degrade our bans story).

We would prefer for everyone to use WebAuthn for local accounts, but this is often not possible and
passwords are OK as long as they're just put in a password manager.

To create a local account, get the following info:

e Username
e Email (which will appear publicly on Gerrit and must be deliverable)
e WebAuthn ok?

Then create an account on https://identity.lix.systems/admin with the provided details. On the
account's page, go to Credentials, select Credential Reset, then if WebAuthn is ok for the person,
set "WebAuthn Register Passwordless" in the actions (otherwise just password reset) and send it.

Removing last names for people

Due to Keycloak being a silly little thing, we need to use "declarative user profiles" to allow not
setting last names. For now, Lix core team members with necessary access will have to remove
them manually on request.

This would be fixed by updating Keycloak to 24 on lix.systems and setting up declarative user

profiles: https://git.lix.systems/lix-project/web-services/issues/64

How to ban someone

If a user has violated our community norms and needs to have their access to our infrastructure
removed, follow the following steps:

1. Add them to the banned users list on https://qgit.lix.systems/lix-project/access-control and
push the changes.

2. Go to https://identity.lix.systems/admin and disable their account for good measure.

https://identity.lix.systems/admin
https://git.lix.systems/lix-project/web-services/issues/64
https://git.lix.systems/lix-project/access-control
https://identity.lix.systems/admin

3. Ban them from Matrix: FIXME
4. (if you really don't like what's going on) invalidate all sessions:

1. ssh root@git.lix.systems -- mysql -D forgejo -e 'delete from session;'
2. ssh -p 2022 youruser@gerrit.lix.systems gerrit flush-caches --cache web_sessions

3. FIXME: bookstack

How do permissions work?

In an ideal world, all permissions are managed directly in Keycloak and propagated down to
downstream systems automatically. We mostly live in that world. We would also like more parts of
profiles to propagate from Keycloak into downstream systems (see changing names document).

First, let's enumerate the access that we have available to grant.

Available access

Roles that exist in Keycloak

"sticky" is referring to whether later-removed permissions get stuck in the downstream system if
they are removed upstream

Wiki roles (not sticky)

o Editor

o ModerationBook

o Admin

Buildbot (not sticky)

o can-perform-mutations (currently just a gate on all access)
Forgejo (administrator is probably sticky, however others are not)
o Administrator permissions

o lix-project/nixos issue triage team

o lix-project owners team

Keycloak (not sticky)

o lix-project-user-admin realm role grants administration on keycloak
Grafana (?7)

o Admin

o Editor

Pad (not sticky)

o access

Mattermost (not sticky?)

o access

Roles that we wish existed in Keycloak

These can't happen due to current technical limitations.

e Gerrit: https://git.lix.systems/lix-project/web-services/issues/100
o Lix team

https://git.lix.systems/lix-project/web-services/issues/100

o Possibly other rights like tvix-fork team or others?

Structure of access

Keycloak appears to want its structure to work like:
Group -> Composite Realm Role -> Client Role

We don't have that many groups or client roles to assign to make composite realm roles make
much sense at the time of this writing.

When creating new clients, make their roles client roles, which we can then assign to other objects
inside Keycloak so we can do role-based access control at a later time without having to mess with
the services.

Groups

e lix core team -> grants administrative permission across a lot of infrastructure:
o Wiki
o ModerationBook
o Admin
o Editor
Forgejo
o Administrator
o lix-project owners team
Grafana
o Editor
o Admin
Mattermost
o access
o Pad
o access
Buildbot
o can-perform-mutations
e trusted-contributors
o Forgejo
o lix-project/nixos issue triage team
o Wiki
o Editor
o Buildbot
o can-perform-mutations

o

o

o

o

Policy on who goes in groups

e lix core team: only members of the Lix core team (this group will probably be rearranged
later on)

e trusted-contributors: anyone who is reasonably competent and trustworthy: these are
basically the rights we hand to every single package maintainer in nixpkgs, and we want
to do similarly in Lix.

Especially assign this if someone should be able to have issues assigned to them (since it
is a prerequisite); this means this role should be handed to anyone who is going to
contribute code so we can use the assignment feature of Forgejo to say who is taking an
issue.
o /private beta: this group has been made to indicate who was in trusted-contributors
already due to our simply dumping everyone from the private beta into it

Assigning Groups

See How do permissions work? for implementation details.

tidr;

e Go to the admin console (no trailing slash)
e Go to Groups -> YourGroupHere -> Members
e Add/Remove members as needed

Note: most permissions only update after logging out and back into the appropriate application.

https://wiki.lix.systems/books/lix-infrastructure-guide/page/how-do-permissions-work
https://identity.lix.systems/admin

Tutorial: adding auto mapping of
forgejo groups

Create a role on the Keycloak client:

Clients > Client details

g |‘t OpenID Connect

Clients are applications and services that can request authentication of a user.

Settings Keys Credentials Roles

Role name

administrator

community-team
lix-project-secondary-committer
lix-team-owner

lix-team-triage
the-distro-committer
the-distro-org-owner

uma_protection

Client scopes

Composite

False

False

False

False

False

False

False

False

o Enabled

Autherization Service accounts roles Sessions Permissions Advanced

Description

Has admin to the forgejo instance.

Given access to community team resources

Committer for secondary repos under the lix project org
Jeined to the Lix team as an owner

Triage role on the lix-project team

Commit access to the distro

Org owner of the-distro org on forgejo

Action

-

https://wiki.lix.systems/uploads/images/gallery/2024-07/5ate6xyQVASBjJtL-screenshot-20240708-134308.png

Go into the group in question and map it the role you just made:

< Groups » thedistro » Group details

bootstrap Action ~

Child groups Members Attributes Role mapping Permissions

Q s | | > Hide inherited roles Unassign

&3 Refresh 1-5 =
D Name Inherit... Description
D can manage the distro False Allows adding and removing as well as seeing members of the the distro group. Mote: gives
D forkos-grafana Admin False Admin on grafana
|:| forkes-grafana Editor False Editor in grafana
D git the-distro-ocrg-owner False Org owner of the-distro org on forgejo
D vault user False Access to vaultwarden as a user {(admin role also works for this)

1-5 ~

Add a json snippet to map the role in the incoming tokens to the appropriate team on the org:

{"the-distro-committer": {"the-distro": ["committers"]}, "the-distro-org-owner": {"the-distro": ["owners"]}}

It needs to be added to: https://git.lix.systems/admin/auths/1

https://wiki.lix.systems/uploads/images/gallery/2024-07/COoM2qCIhPECUIIf-screenshot-20240708-134350.png
https://git.lix.systems/admin/auths/1

