
Lix infrastructure
guide
Information about adminstering Lix's infrastructure.

Machine and service overview
Auth/SSO systems

Changing names, emails, etc
How accounts work
How do permissions work?
Assigning Groups
Tutorial: adding auto mapping of forgejo groups

Buildbot runbook
Why
Obliterating history from Git
Tooling improvements

Forgejo improvements

Postmortems

buildbot.lix.systems out of free disk 2024-06-09

Working with S3
Creating Matrix Rooms/Spaces
Merging Gerrit identities

Machine and service overview
The Lix infrastructure is maintained with Nix code at https://git.lix.systems/lix-project/web-services.

That repository is the source of truth for what's serving where, but we attempt to reflect that here
as well for ease of reference. This page is the source of truth for points of contact and where a
machine physically exists.

This page was previously called "Infrastructure overview", but that name falsely implied it was a
good entry point for beginners seeking to understand how to get started in our tooling. This page is
more of an operational reference on how things are deployed.

Hosts
lix.systems
Host info

Point of contact: FIXME
Hosted on: FIXME

Services
https://git.lix.systems - forgejo: infra code, lix code mirror/issues, nix mirror
https://gerrit.lix.systems - gerrit: reviews for lix
https://identity.lix.systems - Keycloak SSO for all lix infrastructure

buildbot.lix.systems
Host info

Point of contact: FIXME
Hosted on: FIXME

Services
https://buildbot.lix.systems - CI for lix, login here (FIXME: the builtin login link is broken
due to JS weirdness)

https://git.lix.systems/lix-project/web-services
https://git.lix.systems
https://gerrit.lix.systems
https://identity.lix.systems
https://buildbot.lix.systems
https://buildbot.lix.systems/auth/login?redirect=/

monitoring.lix.systems
Host info

Point of contact: hexchen
Hosted on: FIXME

Services
https://monitoring.lix.systems - monitoring

cache.lix.systems
"S3" host for the future binary cache.

Host info
Point of contact: FIXME
Hosted on: FIXME

Services
https://s3.lix.systems - garage: blob storage compatible with Amazon's S3 API, used for
documentation and binary cache; currently a CNAME pointing to cache.lix.systems

https://cache.lix.systems - same thing but with a name that suggests it's only intended to
serve the binary cache

scratch.lix.systems
Scratch host to do staging things on.

Host info
Point of contact: FIXME
Hosted on: FIXME

pad.lix.systems
Host info

Point of contact: Kate/Qyriad
Hosted on: FIXME

https://monitoring.lix.systems
https://s3.lix.systems
https://cache.lix.systems

Services
https://pad.lix.systems - private hedgedoc instance of the lix core team
https://wiki.lix.systems - public lix wiki

core.lix.systems
Host info

Point of contact: Kate/Qyriad
Hosted on: FIXME

Services
https://core.lix.systems - private mattermost of the lix core team

matrix.lix.systems
Host info

Point of contact: hexchen
Hosted on: Hetzner

Services
matrix.lix.systems: Matrix Server
draupnir: Matrix Moderation Bot

Builders
build01.aarch64.lix.systems

Point of contact: Raito
Hosted on: Oracle Cloud

build02.aarch64.lix.systems
Point of contact: pennae
Hosted on: Hetzner

https://pad.lix.systems
https://wiki.lix.systems
https://core.lix.systems

build01.aarch64-darwin.lix.systems
Point of contact: Kate
Hosted in: Kate's basement (?)

epyc.infra.newtype.fr
Point of contact: Raito
Hosted in: Raito's basement

Auth/SSO systems
A major part of Lix infrastructure is the authentication/SSO systems. Here, you can find information
about how to run them.

Auth/SSO systems

Changing names, emails, etc
The Lix project endeavours to not deadname people, because we believe in human decency.
However, some of our software has other ideas. This page documents the workarounds to manually
fix profile updates that don't get conducted because various software is busted.

Intended design
Ideally, contributors should be able to go to https://identity.lix.systems and change their
usernames, display names and emails and relog every service, and then every service will have
correct names and emails.

wiki.lix.systems
The wiki does not update emails when they are changed via OIDC. Furthermore, users can't change
them themselves. Why do they do this, we will never know; OIDC has persistent UUIDs, they have
no reason to do this.

To fix a user's email manually, go to https://wiki.lix.systems/settings/users, and select the user in
question and edit them.

The wiki will also not change fullnames automatically, which is also broken, but users can simply
change them. It does not seem to use usernames at all.

git.lix.systems
!! Currently this is broken and we cannot change forgejo usernames at all:
https://git.lix.systems/lix-project/web-services/issues/93. The workaround here is to clear the
username field when changing to a local account.

Forgejo blocks username changes for accounts with external sign-in for no reason. These have to
be fixed by an administrator. Go to https://git.lix.systems/admin/users, click the edit icon next to
the user in question, then set the Authentication Source to Local, fix the username, then press
Update User Account. Next, set the Authentication Source back to Lix.

Users are able to change emails themselves by adding a new email then deleting the old one. They
can also be changed by administrators in the same page as above.

OIDC has persistent UUIDs, there is no reason for Forgejo to do this.

https://identity.lix.systems
https://wiki.lix.systems/settings/users
https://git.lix.systems/lix-project/web-services/issues/93
https://codeberg.org/forgejo/forgejo/issues/687
https://git.lix.systems/admin/users

Forgejo does not update names or emails from Keycloak after initial login, which is broken as well.

gerrit.lix.systems
Gerrit will break accounts rendering them incapable of logging in if they change username.
Changing email and display name works as expected. It appears that Gerrit wants to believe that
usernames are not possible to change, which is a skill issue, because they have numeric IDs.

Extremely untested scuffed-looking db hacking procedure:
https://wikitech.wikimedia.org/wiki/SRE/LDAP/Renaming_users/Gerrit

pad.lix.systems
We think this one works properly last time we checked. It seems to just replace the profile on each
login.

https://wikitech.wikimedia.org/wiki/SRE/LDAP/Renaming_users/Gerrit

Auth/SSO systems

How accounts work
Lix has one source of truth for authentication: Keycloak (identity.lix.systems). Most services are
bound to Keycloak for authentication via OAuth2, although it supports SAML as well.

GitHub vs Local accounts
GitHub accounts are used at Lix for two reasons:

Ease of login and onboarding
Ban/allow list management

We don't really care if people have the same username or other information on Lix as they have on
GitHub. We don't care about whether people have first/last names on our Keycloak or if they are
using pseudonyms.

Allow/ban listing
There is an allow-list and a ban list maintained at: https://git.lix.systems/lix-project/access-control
(private repo, available only to Lix core team). To add people to a list, use ./add.sh list.txt gh-
username . Once a list change is pushed, it can take up to five minutes for the change to take effect,
as this is currently running on a 5m cron job.

In short, the process for adding a user to the ban or allow list is:

1. Make sure you have the latest version of the repo (i.e. git pull) and the github gh
command is installed.

2. Run ./add.sh <relevant-list-file> <github username> .
3. Commit and push the change.
4. The ACL change will apply automatically within five minutes.

Be warned -- the allow-list method of access control is temporary / established for the
beta period.

Our allow/ban listing is done by GitHub ID, using keycloak-allowban-plugin, a custom Keycloak
plugin that reads text files with allow/ban lists. The GitHub ID is put into a user profile attribute,
which prevents ban-evasion via account unlinking since it will stick across unlinking.

Known weirdness with the allow/ban list plugin
If a user tries to log in via GitHub and they are not allowed by the plugin, the account is created
anyway, it is simply not usable. This is a known issue; putting the plugin in the registration flow

https://git.lix.systems/lix-project/access-control
https://git.lix.systems/lix-project/keycloak-allowban-plugin

caused half-registered users, so it is only in the post-gh-login flow and the normal login flow (to
catch unlinked banned accounts).

Local accounts
The Lix core team should have local accounts (linking to GitHub is OK), strongly preferably with
2FA. Other people can be given local accounts if they are trustworthy and prefer to have local
accounts (since the usual ban process doesn't work on them; though it is not hard to ban them, just
disable the account).

Note that GitHub backed accounts can be turned mostly into local accounts by the user simply
setting up local auth and unlinking the GitHub account (though the GitHub ID will intentionally
persist in properties so this doesn't degrade our bans story).

We would prefer for everyone to use WebAuthn for local accounts, but this is often not possible and
passwords are OK as long as they're just put in a password manager.

To create a local account, get the following info:

Username
Email (which will appear publicly on Gerrit and must be deliverable)
WebAuthn ok?

Then create an account on https://identity.lix.systems/admin with the provided details. On the
account's page, go to Credentials, select Credential Reset, then if WebAuthn is ok for the person,
set "WebAuthn Register Passwordless" in the actions (otherwise just password reset) and send it.

Removing last names for people
Due to Keycloak being a silly little thing, we need to use "declarative user profiles" to allow not
setting last names. For now, Lix core team members with necessary access will have to remove
them manually on request.

This would be fixed by updating Keycloak to 24 on lix.systems and setting up declarative user
profiles: https://git.lix.systems/lix-project/web-services/issues/64

How to ban someone
If a user has violated our community norms and needs to have their access to our infrastructure
removed, follow the following steps:

1. Add them to the banned users list on https://git.lix.systems/lix-project/access-control and
push the changes.

https://identity.lix.systems/admin
https://git.lix.systems/lix-project/web-services/issues/64
https://git.lix.systems/lix-project/access-control

2. Go to https://identity.lix.systems/admin and disable their account for good measure.
3. Ban them from Matrix: FIXME
4. (if you really don't like what's going on) invalidate all sessions:

1. ssh root@git.lix.systems -- mysql -D forgejo -e 'delete from session;'
2. ssh -p 2022 youruser@gerrit.lix.systems gerrit flush-caches --cache web_sessions
3. FIXME: bookstack

https://identity.lix.systems/admin

Auth/SSO systems

How do permissions work?
In an ideal world, all permissions are managed directly in Keycloak and propagated down to
downstream systems automatically. We mostly live in that world. We would also like more parts of
profiles to propagate from Keycloak into downstream systems (see changing names document).

First, let's enumerate the access that we have available to grant.

Available access
Roles that exist in Keycloak
"sticky" is referring to whether later-removed permissions get stuck in the downstream system if
they are removed upstream

Wiki roles (not sticky)
Editor
ModerationBook
Admin

Buildbot (not sticky)
can-perform-mutations (currently just a gate on all access)

Forgejo (administrator is probably sticky, however others are not)
Administrator permissions
lix-project/nixos issue triage team
lix-project owners team

Keycloak (not sticky)
lix-project-user-admin realm role grants administration on keycloak

Grafana (?)
Admin
Editor

Pad (not sticky)
access

Mattermost (not sticky?)
access

Roles that we wish existed in Keycloak
These can't happen due to current technical limitations.

Gerrit: https://git.lix.systems/lix-project/web-services/issues/100
Lix team
Possibly other rights like tvix-fork team or others?

Structure of access
Keycloak appears to want its structure to work like:

Group -> Composite Realm Role -> Client Role

We don't have that many groups or client roles to assign to make composite realm roles make
much sense at the time of this writing.

When creating new clients, make their roles client roles, which we can then assign to other objects
inside Keycloak so we can do role-based access control at a later time without having to mess with
the services.

Groups
lix core team -> grants administrative permission across a lot of infrastructure:

Wiki
ModerationBook
Admin
Editor

Forgejo
Administrator
lix-project owners team

Grafana
Editor
Admin

Mattermost
access

Pad
access

Buildbot
can-perform-mutations

trusted-contributors
Forgejo

lix-project/nixos issue triage team
Wiki

Editor
Buildbot

can-perform-mutations

https://git.lix.systems/lix-project/web-services/issues/100

Policy on who goes in groups
lix core team: only members of the Lix core team (this group will probably be rearranged
later on)
trusted-contributors: anyone who is reasonably competent and trustworthy: these are
basically the rights we hand to every single package maintainer in nixpkgs, and we want
to do similarly in Lix.
Especially assign this if someone should be able to have issues assigned to them (since it
is a prerequisite); this means this role should be handed to anyone who is going to
contribute code so we can use the assignment feature of Forgejo to say who is taking an
issue.

/private beta: this group has been made to indicate who was in trusted-contributors
already due to our simply dumping everyone from the private beta into it

Auth/SSO systems

Assigning Groups
See How do permissions work? for implementation details.

tldr;

Go to the admin console (no trailing slash)
Go to Groups -> YourGroupHere -> Members
Add/Remove members as needed

Note: most permissions only update after logging out and back into the appropriate application.

https://wiki.lix.systems/books/lix-infrastructure-guide/page/how-do-permissions-work
https://identity.lix.systems/admin

Auth/SSO systems

Tutorial: adding auto mapping of
forgejo groups
Create a role on the Keycloak client:

https://wiki.lix.systems/uploads/images/gallery/2024-07/5ate6xyQVASBjJtL-screenshot-20240708-134308.png

Go into the group in question and map it the role you just made:

Add a json snippet to map the role in the incoming tokens to the appropriate team on the org:

It needs to be added to: https://git.lix.systems/admin/auths/1

{"the-distro-committer": {"the-distro": ["committers"]}, "the-distro-org-owner": {"the-distro": ["owners"]}}

https://wiki.lix.systems/uploads/images/gallery/2024-07/COoM2qCIhPECUIIf-screenshot-20240708-134350.png
https://git.lix.systems/admin/auths/1

Buildbot runbook
Our buildbot instance has a habit of breaking due to excess load.

Restarting the worker
If the worker (primary, handling nix evaluations) explodes, it can be restarted.

ssh root@buildbot.lix.systems 'systemctl restart buildbot-worker.service'

Re-trying spurious CI failures
Those with the relevant permissions can click the "rebuild" button on a given CI job, but in order to
count for Gerrit's checks and set the Verified +1 flag, you must restart the top-level lix/nix-eval
job; restarting e.g. a single test or build will not affect things on the Gerrit side.

Why
Why? Why self-host all your own
infrastructure?
We tried not to, at the very beginning of the project. We agreed that Github-style code review
wasn't really fit for our kind of project, and wanted to use Gerrit for code review. We started setting
up Gerrithub for a repo hosted on Github, and we ran into so many problems with that approach
that it was actually easier to just self-host Gerrit instead (for starters, some members could not log
in at all).

Then there was little reason to use GitHub, since none of us are really happy with Github direction
lately anyway, and Forgejo + GitHub-enabled SSO mean that contributors shouldn't have to jump
through too many hoops to help out.

So now we have a fully independent and open source infrastructure stack, with (hopefully) a good
onboarding path as well. And we're also in our own critical path: we run into Nix's papercuts and
gashes alike every day, so we better fix it!

Here is our thought process from back then:

GitHub?
Well-known
Easy to contribute to as everyone has an account
CI would need extra work due to VM tests, e.g.

Not a Nix CI system by itself, will be doing self-hosted engineering work for
something extra anyway

Rubbish code review
Can use GerritHub for better review?

CI though?
Evaluated: found that login does not work and vendor is unresponsive to emails
Possible moderation difficulties

Gitlab/Codeberg?
Basically GitHub but by different people
Same CI problems as GitHub but fewer off-the-shelf solutions to them
Rubbish code review

Cannot use GerritHub even assuming that it worked
Need self-hosted Gerrit, so need self-hosted Gerrit auth and well...

(self-hosted) forgejo/gitlab
Much better control over integrations
Same poor code review situation as cloud Forgejo/GitLab

Might as well stand up a forgejo if we already have self-hosted Gerrit and the
auth for it

(self-hosted) Gerrit?
Easy to integrate with and add plugins to vs GerritHub (e.g. Gerrit does not come
with Nix or Meson syntax highlighting)
Full control: can fix issues like moderation
Works at all
Good code review

The Lix CI is broken though!
Yes, our buildbot is a high maintenance service and it is janky. Multiple members of the Lix team
have plans about writing entirely new Nix CI systems, but they are otherwise busy with another
major project in the form of Lix. This is the matrix of extant alternatives:

buildbot
buildbot-nix exists and we have hacked it to use nix-eval-jobs and speak Gerrit with
(limited) caveats

Logs aren't intermixed
Our Gerrit integration is considerably janky auth-wise
There are bugs
UI makes it very non-discoverable which CL caused a build

The old Angular UI is mildly busted, and the new React UI has severe accessibility
problems and is more busted
Knows how to speak Gerrit

Hydra
Due to architectural flaws, it cannot deliver notifications of status to a code review
system

This is a non-starter
Cannot be taught to speak Gerrit because it cannot speak to code review
systems

Notoriously dubious code and DB schema
Logs aren't intermixed
Dubious UI
Unmaintained for non-hydra.nixos.org use cases (and hydra.nixos.org would rather
not use it, but the infra team does not have the cycles to rewrite Hydra)

Something GitHub Actions based
Reinstalls Nix every job
Needs a separate binary cache
Cloud runners are slow and can't run VM tests, need self-hosted runners
Need to solve nix-eval-jobs shaped problems
All the logs go into one stream, rather than being per-derivation, so error reporting is
challenged
Tied to GitHub, impractical to attach to Gerrit

https://git.lix.systems/lix-project/buildbot-nix/src/branch/gerrit

Garnix
Tied to GitHub, impractical to attach to Gerrit
Unclear if it can run VM tests
Closed source, not observable

Woodpecker
Build your own Nix CI!
FIXME: add more about this

Obliterating history from Git
To obliterate history from the Git repo means removing it from three different sources: Gerrit,
Forgejo, and GitHub.

A tool has been written, called gerrit-rewrite-branch, to rewrite Gerrit history completely, including
the meta on past CLs.

To use it, build it as --release (it will stack overflow on debug mode), and find the following repos,
and make backups of them:

/var/lib/gerrit/git/lix.git
/var/lib/forgejo/repositories/*/lix.git

To start off, stop Gerrit and find the Git repo for it. The tool requires four things: The email address
to obliterate, and a replacement name + email address. It also needs a cutoff date for where to
remove commits before. To find this, run git cat-file -p {commit} for a commit earlier than the oldest
you want to remove, and note down the timestamp on the committer line.

Call the tool. It will churn for a while, and rewrite all previous Git commits, plus the Gerrit metadata
of affected commits. As a bonus, run a git gc --prune=now .

Before turning on Gerrit, run systemd-run -p DynamicUser=yes -p StateDirectory=gerrit -t gerrit reindex -d
/var/lib/gerrit . This ensures Gerrit is aware of the changes made outside of its existence.

For forgejo, no special steps are needed; just run the same tool over these repos plus all their
forks, and prune the reflog and unreachable commits as well:

Once Gerrit and Forgejo are back up, run ssh gerrit.lix.systems replication start --now --url github to
propagate the changes to GitHub.

Don't forget to ban the commits as well, using ssh gerrit.lix.systems gerrit ban-commit lix {commits} .

[root@lix:/var/lib/forgejo/repositories]# for i in */lix.git; do pushd $i; sudo -u git git reflog expire --expire=all --
expire-unreachable=all --all; sudo -u git git gc --prune=now; popd; done

https://git.lix.systems/puck/gerrit-rewrite-branch/

Tooling improvements
We use a lot of tooling. There are papercuts we run into with our use cases that we would really
like to have fixed.

Tooling improvements

Forgejo improvements
A brief overview of our code infrastructure for those not in the Lix project:

Forgejo https://git.lix.systems for issue tracking for Lix and other projects, as well as for
project boards. It also provides a read-only git mirror of Lix, forks for WIP code in Lix, and
hosts minor projects like infra and other things that use PR workflows.
Bookstack https://wiki.lix.systems as wiki. It's a more normal wiki program, which has
working search among other niceties. Also, it presents the whole wiki as one entity.
Gerrit https://gerrit.lix.systems for major code review. We have seen the Forgejo gerrit-like
patch workflow and it looks great, but the review UX is not at all like Gerrit and makes
way different prioritization of space.
Not being like Gerrit is largely fine for Forgejo's goals, since it is not aiming to be Gerrit-
like, it is aiming to be GitHub like (and GitHub has quite bad review UX); we would suggest
supporting Change-Ids to have unambiguous change associations, but we probably won't
use that feature anyway as we have Gerrit available.
Buildbot https://buildbot.lix.systems (private link) for CI. We need something quite laser
focused on being good at CI'ing Nix expressions and buildbot-nix is generally the least
broken one of those.
Keycloak https://identity.lix.systems for SSO. It is comprehensive across our entire
infrastructure, and it is the only login system in our infrastructure. We use GitHub as an
upstream for anti-spam + moderation reasons and additionally issue a limited number of
local accounts on Keycloak.

Stuff that works great
Forgejo does a lot of stuff better than GitHub and we love it very much for these things.

The web interface is snappy!
Syncing groups from Keycloak is a breeze.
We can patch it. Gosh. This helps so much.
We only rarely run into bugs.
The devs have generally been quite responsive!
The release notes are generally comprehensive and cover the issues we run into on
upgrades (such as the theme rename and the UTF8 column type thing in mysql).

Stuff that makes us Very Sad

https://git.lix.systems
https://wiki.lix.systems
https://gerrit.lix.systems
https://buildbot.lix.systems
https://identity.lix.systems

Forgejo is a major source of sticky user metadata
https://codeberg.org/forgejo/forgejo/issues/3657 and
https://codeberg.org/forgejo/forgejo/issues/3682. This requires admin intervention if the
username needs to be changed, and causes confusion in administering the system in
general, since usernames don't match with Keycloak so you have to find users in Keycloak
by ID. We want selectable auto-synced user metadata from SSO combined with locking
such synced metadata out on the Forgejo side to prevent confusion.
See also: https://wiki.lix.systems/link/11#bkmrk-git.lix.systems
jade's personal complaint: the label selector is off-screen on mobile Firefox, rendering it
barely possible to use. This is due to having long ish label descriptions, I think:

https://codeberg.org/forgejo/forgejo/issues/3657
https://codeberg.org/forgejo/forgejo/issues/3682
https://wiki.lix.systems/link/11#bkmrk-git.lix.systems

https://wiki.lix.systems/uploads/images/gallery/2024-05/image-1715486067377.png

Stuff that would be Nice
UX

Top simple request, which we are quite likely to do ourselves: something like Gerrit
commentlinks: https://gerrit-review.googlesource.com/Documentation/config-
gerrit.html#commentlink
That is, arbitrary regexes that can inject links into the page, which are applied in
comments and in commit messages. This use case is not served for us by the external
issue tracker feature of Forgejo, since we want to link stuff like Change-Id:
I1360750d4181ce1ca2a3aa4dc0e97e131351c469 , which is not an external issue, it is external
code review. Also, we want to have more than one of them, for things like cl/123 which
should go to the Gerrit changelist 123.
Gerrit has these either installation or repo scoped, and we use both on our installation:
Change-Id and cl/ gets linked everywhere since it is global, and issue refs like #123 get
linked just on the Lix project since it is project specific.
Also, I think that the external issue tracker feature might not work well for its intended use
case anyhow? On GitHub you can have autolinks of TEAMONE-123 and TEAMTWO-123 and
I don't know if Forgejo knows how to do that?
Hacked in with an evil local patch: https://gist.github.com/lf-
/f2e31a329c3c48f09198c865e21618e6
Ability to put arbitrary links at the top of repos next to Issues, etc.
We want this for linking to our Gerrit reviews, so it shouldn't be called Pull Requests, but
idk there might be another way to do this that's better.
Hacked in with an evil local patch: https://gist.github.com/lf-
/f2e31a329c3c48f09198c865e21618e6
jade's personal complaint: I can't hit t to fuzzy-find files like I can on GitHub!
jade's other personal complaint: issue comment fields aren't saved across page changes,
and they also can get desynced such that the comment was posted but you get a warning
on navigating off of the page.
Issue categories display differently if you have a / in them if they are exclusive or not. This
is probably on purpose, but it does make our issue labels look a little bit funny when they
are all hierarchical, just not all of the categories are exclusive.
We would like to be able to replace the explore page with the Lix organization page, since
we don't really want people enumerating our users, and it is the only thing that really
matters significantly on our instance.

Operations
Easier management of bot accounts, perhaps by attaching them to an org or something;
we would like to issue tokens for bot use cases at an org level rather than having to make
weird local accounts and put them in a password manager.

https://gerrit-review.googlesource.com/Documentation/config-gerrit.html#commentlink
https://gerrit-review.googlesource.com/Documentation/config-gerrit.html#commentlink
https://gist.github.com/lf-/f2e31a329c3c48f09198c865e21618e6
https://gist.github.com/lf-/f2e31a329c3c48f09198c865e21618e6
https://gist.github.com/lf-/f2e31a329c3c48f09198c865e21618e6
https://gist.github.com/lf-/f2e31a329c3c48f09198c865e21618e6

Git operations are strangely slow on our instance, taking about 5 seconds to push on
seemingly every repo. We aren't 100% sure why this is, and don't know how to profile it.
The web interface is snappy.
We have a hacky prototype to use SCIP code databases to provide perfect go-to-definition
in the code browser, but we haven't operationalized it with CI builds etc. It would be nice if
Forgejo knew how to handle this natively.

puck> A big issue with this is that this would preferably hook into the syntax
highlighter, to ensure spans don't pass SCIP token boundaries. The prototype I put
together does some trickery to try and figure out exactly which character you clicked
on. This means it works terribly on mobile due to click target sizes. (And it's missing
a nice popup.)

You can't move issues between repos.
Repo-scoped project boards are somewhat useless since you can't include issues from
multiple repos. I am not sure if you can move repo-scoped boards to org-scoped either.
It isn't possible to pause the mail queue by setting workers to 0. Or to flush the mail
queue when the mailer is disabled.
The reason we are writing this is that there was such an operational incident where we
were about to send 900 emails that nobody wanted because of an issue-copying script
(which later had a dont_notify API param added to not try to send the emails in the first
place). I think we deleted the queue directory or broke the mail config on purpose and
then hit the flush button or something.
We have worked around this ourselves but we wanted to mention it.
We have noticed that moderation tools are somewhat lacking in Forgejo compared to
GitHub. For example you can't lock non-member participation in issues if some heated
external event happens (but we would probably just hack our Keycloak allow/ban plugin to
reject registrations).

Although it's not something we need as we can do it with SSO+dumping the session
cache, I don't think you can ban people on Forgejo?
We would like to be able to time people out

We can't easily redact/replace commit IDs from the activity log since they are stored as
HTML. The purpose of this is to be able to perform Git history rewriting in case we want to
wipe someone's deadname from history and fix it. This is not urgent, as in, we don't know
when we will need this, but it will plausibly happen one day; I think we were considering
writing tooling to fix it up in the DB though.

puck> The event history of a repository will keep old commits IDs, and their
summaries, even if the commit no longer exists.
puck> The tooling to rewrite commit IDs has been written, but is a massive hack
(see how to use it): it takes in a mysqldump and rewrites any mention of the commit
ID. It works, though ^_^
puck> This might be a big ask, but it'd be great to have an equivalent to Gerrit's
"banned commits" - commit hashes that, if encountered on any push, reject the push
instantly.

Teams don't have a check box to auto-add them to new public repos. We use teams to
grant wide reaching issue triage permissions on everything (this works fantastically for us

https://github.com/sourcegraph/scip
https://git.lix.systems/puck/testfudgethingy/src/branch/main/script.js
https://git.lix.systems/puck/gerrit-rewrite-branch/
https://wiki.lix.systems/books/lix-infrastructure-guide/page/obliterating-history-from-git

as a community, and nixpkgs also does this), but we have some private repos we don't
wish to grant access on, so we had to set the team to not all repos.
There are no org-scoped milestones, which is somewhat annoying as we are using forgejo
for planning-related issues that aren't in the Lix repo itself, but do block release. We have
used projects for now and it's generally fine.
It isn't possible to continuously mirror new issues on a repo from GitHub.

Relatedly, it is not possible to limit creating new issues on a repo and thus messing
up the numbering of such a mirror
We don't need this that bad since we seem to be going on a very-hard fork course of
not worrying about the upstream issue tracker anymore.

Stuff we patched that could probably be done
Better upstream

We added a Nix tarball link feature, which is now upstream! ��
In routers/web/auth/auth.go we have patched a redirect in to just unconditionally go to
OAuth2 when you hit the login button. This is kind of a hack, and it prevents logging in
with local accounts, which we have an extremely limited use of for a bot account.
Probably the good implementation here is this but with a ?local url parameter or so.
We have an issue mirror of nixos/nix on GitHub (which is likely to be deprecated soon, to
be fair! so don't worry too much about it) and we did this to add a button to get to
upstream issues; in general adding navigation in the tool would be good:

diff --git a/templates/repo/issue/view_title.tmpl b/templates/repo/issue/view_title.tmpl
index c1dd265..9a573ce 100644
--- a/templates/repo/issue/view_title.tmpl
+++ b/templates/repo/issue/view_title.tmpl
@@ -16,6 +16,9 @@
 			{{if and (or .HasIssuesOrPullsWritePermission .IsIssuePoster) (not .Repository.IsArchived)}}
 				<button id="edit-title" class="ui small basic button edit-button not-in-edit{{if .Issue.IsPull}} gt-mr-
0{{end}}">{{.locale.Tr "repo.issues.edit"}}</button>
 			{{end}}
+			{{if and (eq .Repository.Name "nix") (eq .Repository.OwnerName "NixOS")}}
+				<a role="button" class="ui small basic button"
href="https://github.com/NixOS/nix/issues/{{.Issue.Index}}">{{svg "octicon-mark-github"}} Open
upstream
+			{{end}}
 			{{if not .Issue.IsPull}}
 				<a role="button" class="ui small green button new-issue-button gt-mr-0"
href="{{.RepoLink}}/issues/new{{if .NewIssueChooseTemplate}}/choose{{end}}">{{.locale.Tr
"repo.issues.new"}}

https://codeberg.org/forgejo/forgejo/pulls/3615

 			{{end}}

We have an extremely scuffed patch to add a dont_notify parameter on the issue creation
endpoint. This is so you can build automation that creates a giant pile of issues that you
want in the tracker but which don't need to notify anyone.

Postmortems

Postmortems

buildbot.lix.systems out of free disk
2024-06-09
The buildbot box was returning "no free space" to basically any btrfs operation including collecting
garbage. Yet df -h stated that it had disk around.

Damn it!!

https://ohthehugemanatee.org/blog/2019/02/11/btrfs-out-of-space-emergency-response/

The box has another disk on it that did have space, but it was ext4. So I did something inadvisable:

This freed enough disk that the machine was unstuck. I then ran more of a garbage collection,
which freed enough space to further recover the machine.

the device we were going to migrate nix store to
mount /dev/sda1 /mnt
fallocate -l 20GiB /mnt/ohno
losetup -f /mnt/ohno
losetup -a
bad evil!! do not do this! this is a great way how you break your fs if the machine goes down
btrfs device add /dev/loop0 /
btrfs balance start -dusage=10 /
nix-collect-garbage # for a bit, then ctrl-c'd
btrfs device delete /dev/loop0 /

https://ohthehugemanatee.org/blog/2019/02/11/btrfs-out-of-space-emergency-response/

Working with S3
Introduction
We use garage, an open-source server compatible with Amazon's S3 API, hosted on our own
infrastructure. Currently we store both documentation and binaries there; it may be used for other
things down the line.

Configuring a client
You probably want to use rclone; it's friendly (to people who like the terminal) and not tightly
bound to any specific storage service. You can also use the Amazon first-party S3 tooling, but this
guide does not attempt to explain how.

To follow these steps, you will need to already have ssh access to the server garage runs on, which
is s3.lix.systems . As of this writing, there is no guide about how to do that, but take a look at
services/ssh.nix in the web-services repo and see whether it makes sense to you. Please feel free to
write said guide and add it to this wiki. :)

Generating S3 credentials
Once you have ssh access, you will need to make s3 credentials. You can do it like this:

(Don't worry - those aren't real keys there, nor were they ever! They're synthetic examples so you
know what they look like.)

$ ssh root@s3.lix.systems
[root@cache:~]# garage key create some-key-name
Key name: some-key-name
Key ID: GKa653da6819c4140c3db9dfc5
Secret key: ab2b6106fbb7681517cba875c26c8ea99e281f113e2fd809decd6e524ebbc639

Can create buckets: false

Key-specific bucket aliases:

Authorized buckets:

https://garagehq.deuxfleurs.fr/
https://rclone.org/

You'll want to choose a key name that helps the rest of us know whose it is and what it's used for.
Don't just create a key called some-key-name by copying the example verbatim, it will be confusing
clutter!

The most important criterion for a key name is that reading the name should let you answer the
questions "is anyone still using this?" and "what will break if this key is deleted?" If you need
naming inspiration you can see other people's key names with garage key list ; in particular, keys
meant for individual use should probably start with your username.

Before you sign out of the server, also make sure to grant the key the permissions you need. For
example, if you need to work with the docs bucket, do:

You can see what buckets exist by doing garage bucket list .

The "Key ID" and "Secret key" values from the key you generated are what you'll need in the next
step. Make sure you have them; there's no way to look up the secret part later.

Configuring your client (probably rclone)
You may find it useful to reference the garage documentation on this.

There are two ways to configure rclone, either of which will work. The one Irenes recommend is to
put the credentials directly into the rclone configuration (it has its own tooling for securing them,
which you can set up if you want). The other way is to let rclone read them out of the config file
used by Amazon's first-party tooling. Either will work; using the AWS config file is a little harder to
figure out what you did later, if you happen to forget. Also, if Lix infrastructure isn't the only S3
service you use on a regular basis, the rclone config is probably a better place to keep track of
everything because AWS profiles are a pain to use.

If you're doing it the Irenes way, you can either run rclone config and go through the prompts, or
just prepare a config file by hand.

Here's a sample rclone.config:

[root@cache:~]# garage bucket allow --read --write docs --key irenes-temp-delete
New permissions for GKa653da6819c4140c3db9dfc5 on docs: read true, write true, owner false.

[lix]
type = s3
provider = Other
env_auth = false
endpoint = s3.lix.systems
region = garage
access_key_id = GKa653da6819c4140c3db9dfc5

https://garagehq.deuxfleurs.fr/cookbook/clients.html

For more information about where to put this config file, see man rclone ; it's likely that
~/.config/rclone/rclone.conf is the right place.

Please notice that this example file uses lix as the name of the rclone "remote". That means that,
when interacting with it, you'll use paths like lix: to refer to the entire thing, or lix:docs/ to refer to
the root of the bucket named docs , and so on. You can use any name you find convenient for the
remote, it doesn't have to be lix , but this document will assume it's that. If you think you might
have done this configuration already but don't remember what you called the remote, do rclone
listremotes .

If you're going through the interactive configuration, choose the generic S3-compatible service as
the type of service. For the endpoint, write in s3.lix.systems , and for the region, write in garage . If
you leave region blank you'll get weird errors about us-east-1, but we're not Amazon and we don't
have a global network of highly-redundant data centers, so don't leave it blank. :)

If you're storing credentials in the AWS config file, everything is pretty similar except you'll need to
prepare ~/.aws/credentials yourself, and tell rclone to use it; the rclone config wizard has options for
that. The easy way is to use the default profile in the AWS credentials file; otherwise you'll have to
make sure your environment sets AWS_PROFILE , since rclone has no option to manage that itself.

Copying files into and out of s3
If you're using rclone , you may find it useful to do rclone ls lix: to get a sense of what's there. This
will probably become increasingly bad advice as our usage of S3 grows! :)

Notice that the first path component in this output is the bucket name, so ie. a file named
index.html at the root of the docs bucket is listed as docs/index.html in this view. That is also how
you will refer to it from the command line. Other S3 clients have different conventions in this
regard, so if you're using something else, check its upstream documentation.

If you have a local file index.html and you want to overwrite the remote docs/index.html with it, do
rclone copy index.html lix:docs/ . You have to give a directory prefix, not a filename, for the second
part.

In general, the rclone CLI lets you intermingle local and remote paths, so pay close attention to the
colons. lix:something is a remote path, something is a local one. If you lose track of this you will end
up sad.

For any other rclone -related questions, rclone --help and man rclone are good references.

Happy filing!

secret_access_key = ab2b6106fbb7681517cba875c26c8ea99e281f113e2fd809decd6e524ebbc639

Creating Matrix Rooms/Spaces
actual explanation will follow, tldr; here:

create room with the matrix API or a client that allows you to set powerlevel 101:

If using an existing room, powerlevel 100 is the most you can get

curl -H "Authorization: Bearer SNIP" -X POST http://localhost:8008/_matrix/client/v3/createRoom -d
'{"power_level_content_override":{"users":{"@draupnir:lix.systems":101,"@hexchen:colon.at":100}},
"invite":["@hexchen:colon.at"],"room_alias_name":"open-beta","name":"Lix Open
Beta","visibility":"public"}'

if not created using the credentials of the lix draupnir bot: set a room alias using !draupnir
alias add #room-alias:lix.systems !roomid:example.org

then add as a secondary or primary alias to the room
make sure @draupnir:lix.systems is invited to the room and has the maximum available
power level in the room.

Draupnir can join with !draupnir rooms add <roomid>
add room to appropriate spaces. This might require help from someone with permissions
if you are not on the community team to give yourself permissions using draupnir.
Demote yourself to have a lower powerlevel less than Draupnir

Merging Gerrit identities
Basically, following https://ovirt-infra-
docs.readthedocs.io/en/latest/General/Gerrit_account_merge/index.html.

If for some reason, you don't have access to refs/meta/external-ids , you can still do it on the server
directly as long as you ensure that you restore the permbits for gerrit:gerrit on the git storage.

You can extract a worktree git worktree add /tmp/external-ids refs/meta/external-ids , generate a commit
that fixes things and you can complete by git update-ref refs/meta/external-ids $commit_sha1 .

Note:

that CLs under dashboard of the previous account will just disappear and won't go to the
new account.
HTTP passwords are generated under the old username (?)
prefer always to take the account with the most changes/comments.

https://ovirt-infra-docs.readthedocs.io/en/latest/General/Gerrit_account_merge/index.html
https://ovirt-infra-docs.readthedocs.io/en/latest/General/Gerrit_account_merge/index.html

