
Why

Why? Why self-host all your own
infrastructure?
We tried not to, at the very beginning of the project. We agreed that Github-style code review
wasn't really fit for our kind of project, and wanted to use Gerrit for code review. We started setting
up Gerrithub for a repo hosted on Github, and we ran into so many problems with that approach
that it was actually easier to just self-host Gerrit instead (for starters, some members could not log
in at all).

Then there was little reason to use GitHub, since none of us are really happy with Github direction
lately anyway, and Forgejo + GitHub-enabled SSO mean that contributors shouldn't have to jump
through too many hoops to help out.

So now we have a fully independent and open source infrastructure stack, with (hopefully) a good
onboarding path as well. And we're also in our own critical path: we run into Nix's papercuts and
gashes alike every day, so we better fix it!

Here is our thought process from back then:

GitHub?
Well-known
Easy to contribute to as everyone has an account
CI would need extra work due to VM tests, e.g.

Not a Nix CI system by itself, will be doing self-hosted engineering work for
something extra anyway

Rubbish code review
Can use GerritHub for better review?

CI though?
Evaluated: found that login does not work and vendor is unresponsive to emails
Possible moderation difficulties

Gitlab/Codeberg?
Basically GitHub but by different people
Same CI problems as GitHub but fewer off-the-shelf solutions to them
Rubbish code review

Cannot use GerritHub even assuming that it worked
Need self-hosted Gerrit, so need self-hosted Gerrit auth and well...

(self-hosted) forgejo/gitlab
Much better control over integrations

Same poor code review situation as cloud Forgejo/GitLab
Might as well stand up a forgejo if we already have self-hosted Gerrit and the
auth for it

(self-hosted) Gerrit?
Easy to integrate with and add plugins to vs GerritHub (e.g. Gerrit does not come
with Nix or Meson syntax highlighting)
Full control: can fix issues like moderation
Works at all
Good code review

The Lix CI is broken though!
Yes, our buildbot is a high maintenance service and it is janky. Multiple members of the Lix team
have plans about writing entirely new Nix CI systems, but they are otherwise busy with another
major project in the form of Lix. This is the matrix of extant alternatives:

buildbot
buildbot-nix exists and we have hacked it to use nix-eval-jobs and speak Gerrit with
(limited) caveats

Logs aren't intermixed
Our Gerrit integration is considerably janky auth-wise
There are bugs
UI makes it very non-discoverable which CL caused a build

The old Angular UI is mildly busted, and the new React UI has severe accessibility
problems and is more busted
Knows how to speak Gerrit

Hydra
Due to architectural flaws, it cannot deliver notifications of status to a code review
system

This is a non-starter
Cannot be taught to speak Gerrit because it cannot speak to code review
systems

Notoriously dubious code and DB schema
Logs aren't intermixed
Dubious UI
Unmaintained for non-hydra.nixos.org use cases (and hydra.nixos.org would rather
not use it, but the infra team does not have the cycles to rewrite Hydra)

Something GitHub Actions based
Reinstalls Nix every job
Needs a separate binary cache
Cloud runners are slow and can't run VM tests, need self-hosted runners
Need to solve nix-eval-jobs shaped problems
All the logs go into one stream, rather than being per-derivation, so error reporting is
challenged
Tied to GitHub, impractical to attach to Gerrit

https://git.lix.systems/lix-project/buildbot-nix/src/branch/gerrit

Garnix
Tied to GitHub, impractical to attach to Gerrit
Unclear if it can run VM tests
Closed source, not observable

Woodpecker
Build your own Nix CI!
FIXME: add more about this

Revision #5
Created 9 April 2024 06:54:22 by Qyriad
Updated 9 April 2024 07:41:11 by jade

